五轴端铣摆线齿轮关键技术研究
发布时间:2018-01-22 11:39
本文关键词: 摆线齿轮 五轴高速端铣 动态铣削力弯扭剪耦合铣削变形 轴向切深极限 颤振稳定域 多目标参数优化 出处:《华侨大学》2016年博士论文 论文类型:学位论文
【摘要】:国产摆线针轮减速器的品质缺陷主要表现为传动精度差、运动不平稳,承载能力和寿命低。造成这些问题的根本原因是摆线齿轮齿面的精加工技术问题。目前国内普遍采用磨床精加工摆线齿轮的齿面,由于刀具结构等原因,加工后摆线齿轮的齿形精度和表面质量都较差,致使摆线针轮减速器的传动精度、传动平稳性以及减速机的寿命大为降低。这一问题在小型摆线针轮减速器的制造中尤为突出。突破高档摆线针轮减速器制造问题的关键在于保证摆线齿轮齿面的精加工质量和高效率。为此,本文以五轴高速端铣精密摆线齿轮为研究背景,重点围绕五轴高速端铣摆线齿轮刀具轨迹规划方法、摆线齿轮铣削力及耦合铣削变形模型构建、摆线齿轮铣削颤振稳定域分析及铣削参数优化、摆线齿轮高速端铣试验及精度分析等关键技术展开研究,主要研究内容如下:(1)提出五轴端铣摆线齿轮无干涉刀具轨迹规划方法。结合刀具前倾角和侧倾角,建立端铣刀有效切削椭圆数学模型,推导出端铣刀切削宽度近似计算公式,提出利用前倾角和侧倾角分别解决端铣刀局部干涉与刀杆碰撞干涉问题的方法。得出无干涉加工摆线齿轮刀轴前倾角的计算公式;获得加工摆线齿轮外凸和内凹齿廓曲面处的行距表达式。建立端铣摆线齿轮的几何模型和五轴数控仿真模型,获得其刀具轨迹。通过实例数控仿真,表明各参数设置合理,加工轨迹均匀顺畅,分布合理,无加工干涉。(2)建立摆线齿轮动态铣削力及耦合铣削变形模型。基于切削力系数辨识试验获得刀具-工件的切削力系数,基于瞬时刚性铣削力公式建立端铣刀动态铣削力模型,并依据该模型进行端铣摆线齿轮铣削力仿真。基于弹性力学理论建立摆线齿轮在铣削过程中弯扭剪耦合铣削变形模型。利用ANSYS对摆线齿轮的铣削变形进行有限元分析,得到在铣削过程中沿摆线齿轮圆周方向的铣削变形规律及不同铣削参数对摆线齿轮应力应变的影响。(3)建立刀具-工件的动力学数学模型,提出预测铣削稳定性轴向切深极限的计算方法。将整个加工系统分为“刀具-主轴”和“工件-夹具”两个子系统,分别进行实验模态分析,获得系统在不同条件下的相应的频率响应函数和模态参数。绘制得到表征主轴转速和轴向切深对应关系的颤振稳定域叶瓣图;最后通过对摆线齿轮端铣加工实验验证该颤振稳定域解析算法的准确性。(4)以摆线齿轮的精加工工艺为研究对象,提出基于加工系统动力学特性的铣削参数多目标优化方案。以主轴转速、每齿进给量、轴向切深和径向切深为设计变量,以最大生产率、最低加工成本为综合优化目标函数,从机床性能、刀具性能以及加工质量等三方面进行约束条件界定,构建铣削参数多目标优化模型。将加工系统的稳定性作为关键的约束条件来进行铣削参数优化,成功地实现摆线齿轮加工的铣削参数优化。仿真和试验结果表明:采用优化后的铣削参数进行摆线齿轮加工,能提高加工表面质量,并一定程度减少刀具变形,降低了加工成本。(5)设计摆线齿轮数控加工工艺路线,利用五轴联动立式加工中心实现摆线齿轮的高速端铣加工,得到精加工的摆线齿轮样件。提出摆线齿轮齿廓曲面的三坐标测量和误差评定方法。利用接触式轮廓仪对摆线齿轮齿廓曲面的粗糙度进行测量。该试验验证高速端铣摆线齿轮的加工方法可以达到磨削摆线齿轮的加工精度,从而实现摆线齿轮加工的“以铣代磨”,提高加工效率。
[Abstract]:Domestic cycloid reducer quality defects mainly for transmission precision, unstable movement, bearing capacity and low life. The root causes of these problems is the problem of the cycloid gear tooth surface finishing technology. Currently widely used grinding machining cycloid gear tooth surface, the tool structure and other reasons, after processing the cycloid the gear tooth shape precision and surface quality are poor, resulting in the transmission precision reducer cycloid reducer, transmission stability and the service life is greatly reduced. The problem of reducer manufacturing especially in small cycloid. Breakthrough high-end cycloid reducer manufacturing problems is the key to ensure the cycloid gear the tooth surface machining quality and efficiency. Therefore, this paper takes five axis high speed end milling precision cycloidal gear as the research background, focus on five axis high speed milling tool path planning of cycloidal gear The construction method, deformation model of cycloid gear milling force and milling chatter stability coupling, cycloid gear milling analysis and optimization of cutting parameters, carried out research on the key technology of cycloid gear high speed end milling experiment and accuracy analysis, the main research contents are as follows: (1) proposed five axis end milling cycloidal gear interference free tool path planning method. Combined with the tool inclination and tilt angles, establish effective mathematical model of end milling cutting ellipse, end milling cutter width approximate calculation formula is derived. The proposed interference problem method using inclination and tilt angles respectively solve the end milling cutter bar and local interference collision is obtained. The computation formula of interference processing cycloidal gear cutter shaft anteversion; space expression processing cycloidal gear and convex concave tooth profile surface is obtained. A geometric model of end milling cycloidal gear and five axis NC simulation model, the tool path. The example shows that the numerical simulation, the reasonable parameters, processing path is uniform and smooth, reasonable distribution, without processing the interference. (2) establish the cycloid gear dynamic milling force and milling deformation coupling model. The cutting force coefficient of cutting force coefficients identification test tool workpiece based on instantaneous rigid milling force formula of end milling dynamic milling force based on the model, and on the basis of the model for end milling of cycloid gear milling force simulation. Elastic mechanics theory to establish the cycloid gear in the milling process coupled flexural torsional shearing milling deformation. Using ANSYS model based on milling of cycloidal gear deformation finite element analysis during milling milling along the circumferential direction of the cycloid gear deformation and different milling parameters the influence of stress and strain of cycloid gear. (3) the establishment of dynamic mathematical model of the tool workpiece, the milling stability is proposed to predict the axial cutting depth limit 璁$畻鏂规硶.灏嗘暣涓姞宸ョ郴缁熷垎涓衡,
本文编号:1454563
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/1454563.html