回转体内表面波纹微结构的电化学加工技术基础研究
本文选题:波纹微结构 切入点:电铸 出处:《南京航空航天大学》2017年硕士论文
【摘要】:回转体内表面波纹微结构是微机电系统中广泛使用的典型结构,波纹筋槽宽仅有0.1mm,深宽比大,无法通过传统的加工方式制备。电化学加工以“自然状态”近似原子单位的尺度量级实现材料的去除与堆积,从原理上是极具优势的微结构加工方法。本文采用电铸技术制备回转体内表面波纹微结构,提出了两种芯模制备方案并展开技术研究,对各自的加工效果进行了试验研究及对比分析。主要研究内容如下:1、提出了微细电解线切割加工整体芯模的方法。建立了微细电解线切割回转体外表面波纹微结构的电场模型,阐明了回转体外表面电解线切割过程中加工区域电流密度的变化规律。改造微细电解线切割的试验系统,基于LabWindows/CVI平台开发了相应的加工控制和检测系统。分析了铝在电解过程中的钝化现象。试验探究了不同工艺参数(加工电压、脉冲频率、主轴转速)对回转体外表面波纹微结构微细电解线切割加工的影响。采用优化的工艺参数组合:加工电压9V、脉冲频率150KHz、电极转速2000rpm,加工出槽宽80μm、槽深100μm、槽间距100μm的回转体外表面波纹微结构。2、提出了电化学组合加工方法制备组合芯模:利用微细电解切割加工出的铝环和电铸加工的铜环进行组装,得到组合芯模。分析了微螺旋电极电解切割加工的强化传质机理,探究了络合剂的络合反应对提高电解加工表面质量的机理。改造微螺旋电极电解切割的试验系统,并试验探究了不同工艺参数(加工电压、微螺旋电极直径、络合剂浓度)对于加工缝宽和加工效率的影响。采用优化的工艺参数组合:加工电压8.5V、微螺旋电极直径0.3mm、络合剂GLDA浓度15g/L、进给速度1.2μm/s,在100μm厚铝片上加工出外径4.2mm,内径3.2mm的铝环。最后对组合芯模的装配效果进行了分析。3、介绍了电铸加工回转体内表面波纹微结构的试验原理,搭建了回转体内表面波纹微结构电铸加工的试验装置。对不同方法制备的芯模电铸效果进行了比较分析。最后确定了采用电化学加工方法制备组合芯模,再进行回转体内表面波纹微结构电铸加工的工艺路线,制备出筋宽104.8±6.5μm、深476.2±9.2μm的回转体内表面波纹微结构。
[Abstract]:The corrugated micro-structure of the surface of the rotating body is a typical structure widely used in MEMS. The groove width of the corrugated rib is only 0.1 mm and the aspect ratio is large. It can not be prepared by traditional processing. Electrochemical machining can remove and pile up materials in the order of "natural state" approximate atomic units. In this paper, electroforming technology is used to fabricate corrugated microstructures on the surface of rotating body, and two kinds of core mould preparation schemes are proposed and the technical research is carried out. The experimental study and comparative analysis of their machining effects are carried out. The main research contents are as follows: 1. The method of micro electrolysis wire cutting for the whole core mold is put forward. The electric field model of micro electrolysis wire cutting rotating surface corrugation microstructure is established. The changing rule of current density in machining area during electrolysis wire cutting process of rotating external surface is expounded, and the test system of micro electrolysis wire cutting is reformed. Based on the LabWindows/CVI platform, the corresponding machining control and detection system was developed. The passivation phenomenon of aluminum in electrolysis process was analyzed. The different process parameters (processing voltage, pulse frequency, pulse frequency) were investigated. The effect of spindle speed on micro electrolysis wire cutting with corrugated microstructure on the surface of rotating external surface. The optimized process parameters were adopted: processing voltage 9V, pulse frequency 150kHz, electrode speed 2000rpm, groove width 80 渭 m, groove depth 100 渭 m, slot spacing 100 渭 m. Based on the corrugated microstructure of the rotating external surface, an electrochemical combined machining method was proposed to prepare the composite core mold. The composite core mold was assembled by micro-electrolysis cutting aluminum ring and electroforming copper ring. The combined core mould was obtained. The mechanism of enhanced mass transfer in electrolytic cutting of microhelical electrode was analyzed, the mechanism of complexing reaction of complexing agent to improve the surface quality of ECM was explored, and the experimental system of electrolytic cutting of micro-helical electrode was reformed. Different process parameters (processing voltage, diameter of microhelical electrode) were investigated. The effect of complexing agent concentration on machining seam width and machining efficiency. The optimized process parameters were as follows: processing voltage 8.5 V, diameter of microhelical electrode 0.3 mm, concentration of GLDA 15 g / L, feed speed 1.2 渭 m / s, external diameter 4.2 mm on 100 渭 m thick aluminum sheet. Aluminum ring with inner diameter 3.2mm. Finally, the assembly effect of the combined core die is analyzed, and the experimental principle of electroforming the corrugated micro-structure on the surface of rotary body is introduced. An experimental device for electroforming of corrugated microstructures on the surface of rotating body was set up. The electroforming effects of core mould prepared by different methods were compared and analyzed. Finally, the electrochemical machining method was used to prepare composite core mould. The corrugated micro-structure of the inner surface of the rotary body was prepared by electroforming the corrugated surface of the body with a width of 104.8 卤6.5 渭 m and a depth of 476.2 卤9.2 渭 m.
【学位授予单位】:南京航空航天大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TG662
【参考文献】
相关期刊论文 前10条
1 赵秋颖;何辉文;张海奇;;一种Ka波段双槽波纹喇叭天线的设计[J];雷达科学与技术;2016年02期
2 杨文文;刘文朋;;太赫兹通信研究进展[J];北京联合大学学报(自然科学版);2015年04期
3 唐岳;罗红平;吴明;孙涛涛;尹潇靓;;电液束加工的发展与应用[J];电加工与模具;2015年S1期
4 谢苏隆;叶长利;于飞;;高性能馈源喇叭综述[J];空间电子技术;2014年04期
5 冯伟;张戎;曹俊诚;;太赫兹雷达技术研究进展[J];物理;2013年12期
6 王建国;王祝堂;;航空航天变形铝合金的进展(1)[J];轻合金加工技术;2013年08期
7 Qu Ningsong;Fang Xiaolong;Li Wei;Zeng Yongbin;Zhu Di;;Wire electrochemical machining with axial electrolyte flushing for titanium alloy[J];Chinese Journal of Aeronautics;2013年01期
8 陈勇华;;微机电系统的研究与展望[J];电子机械工程;2011年03期
9 贾继欣;曲宁松;房晓龙;曾永彬;;毛细管电极电液束加工微小孔试验研究[J];电加工与模具;2011年02期
10 李冬林;朱荻;李寒松;;辅助阳极掩模板电解加工技术[J];南京航空航天大学学报;2010年04期
相关会议论文 前1条
1 张鹏飞;房晓龙;曾永彬;邹祥和;;微螺旋电极电解切割GH4169试验研究[A];第16届全国特种加工学术会议论文集(上)[C];2015年
相关博士学位论文 前3条
1 王昆;微细电解线切割加工技术的基础研究[D];南京航空航天大学;2007年
2 万熠;高速铣削航空铝合金刀具失效机理及刀具寿命研究[D];山东大学;2006年
3 明平美;UV-LIGA-微细电火花加工组合制造技术基础研究[D];南京航空航天大学;2006年
相关硕士学位论文 前3条
1 朱兵;厚不锈钢板的微细电解线切割加工技术研究[D];南京航空航天大学;2010年
2 李萌;馈源喇叭天线的研究[D];西安电子科技大学;2010年
3 张美丽;钛合金电解加工基础试验研究[D];南京航空航天大学;2007年
,本文编号:1693034
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/1693034.html