基于阵列微通道的电磁成形数值模拟及实验研究
本文选题:微成形 + 电磁成形 ; 参考:《浙江大学学报(工学版)》2017年01期
【摘要】:基于ANSYS有限元模拟平台,建立箔板电磁微成形有限元模型,开展阵列通道电磁微成形过程的有限元模拟分析,获得均匀压力线圈电磁力分布规律及箔板电磁微成形过程中零件不同区域典型点动态响应过程.模拟结果显示,电磁微成形过程中均匀压力线圈能够为金属箔板变形区域提供始终保持均匀的电磁力作用,在成形过程中零件不同区域典型点与模具表面高速碰撞后发生不同程度的弹复运动.使用内凹型和外凸型两种形式模具,开展阵列通道电磁微成形实验,微通道高度充填比分别达到93%和100%,微通道最大充填相对误差分别为0.014 8和0.019 6.结果表明,电磁微成形技术能够成形出一致性好的阵列微通道零件.
[Abstract]:Based on the finite element simulation platform of ANSYS, the finite element model of electromagnetic microforming of foil plate is established, and the finite element simulation analysis of the electromagnetic microforming process of array channel is carried out. The distribution law of electromagnetic force of uniform pressure coil and the dynamic response process of typical points in different regions of parts during electromagnetic microforming of foil plate are obtained. The simulation results show that the uniform pressure coil can provide uniform electromagnetic force for the deformation region of metal foil sheet during electromagnetic microforming. In the process of forming, different degrees of spring motion occur after the typical points in different regions collide with the die surface at high speed. The experiments of array channel electromagnetic microforming were carried out by using the inner concave and convex die. The filling ratio of microchannel height was 93% and 100% respectively. The relative error of maximum filling of microchannel was 0.014 8 and 0.019 6 respectively. The results show that the electromagnetic microforming technology can produce a uniform array of microchannel parts.
【作者单位】: 哈尔滨工业大学材料科学与工程学院;哈尔滨工业大学微系统与微结构制造教育部重点实验室;
【基金】:国家“973”基础研究发展规划资助项目(2012CB934100) 国家青年基金资助项目(51375113)
【分类号】:TG391
【相似文献】
相关期刊论文 前10条
1 陈永平;肖春梅;施明恒;吴嘉峰;;微通道冷凝研究的进展与展望[J];化工学报;2007年09期
2 胡雪;魏炜;雷建都;马光辉;苏志国;王化军;;T型微通道装置制备尺寸均一壳聚糖微球[J];过程工程学报;2008年01期
3 甘云华;杨泽亮;;轴向导热对微通道内传热特性的影响[J];化工学报;2008年10期
4 杨凯钧;左春柽;丁发喜;王克军;吕海武;曹倩倩;王吉顺;;微通道散热器长直微通道的新加工工艺研究[J];吉林化工学院学报;2011年09期
5 付涛涛;朱春英;王东继;季喜燕;马友光;;微通道内气液传质特性[J];化工进展;2011年S2期
6 卜永东;沈寅麒;杜小泽;杨立军;杨勇平;;仿蜂巢微通道分叉结构的甲醇重整制氢[J];化工学报;2013年06期
7 宋善鹏;于志家;刘兴华;秦福涛;方薪晖;孙相_g;;超疏水表面微通道内水的传热特性[J];化工学报;2008年10期
8 李彩霞;王斯民;胡鹏睿;;等壁温下平行微通道内层流换热的数值模拟[J];化学工程;2012年03期
9 李鑫;陈永平;吴嘉峰;施明恒;;宽矩形硅微通道中流动冷凝的流型[J];化工学报;2009年05期
10 马璨;袁惠新;杨振东;鲁娣;;微反应器矩形微通道截面高宽比对流速的影响[J];环境科学与技术;2009年10期
相关会议论文 前10条
1 史东山;李锦辉;刘赵淼;;关于微通道相关问题研究方法现状分析[A];北京力学会第18届学术年会论文集[C];2012年
2 逄燕;刘赵淼;;温黏关系对微通道内液体流动和传热性能的影响[A];北京力学会第18届学术年会论文集[C];2012年
3 范国军;逄燕;刘赵淼;;微通道中液体流动和传热特性的影响因素概述[A];北京力学会第18届学术年会论文集[C];2012年
4 刘丽昆;逄燕;刘赵淼;;几何参数对微通道液体流动和传热性能影响的研究[A];北京力学会第18届学术年会论文集[C];2012年
5 刘丽昆;刘赵淼;申峰;;几何参数对微通道黏性耗散影响的研究[A];北京力学会第19届学术年会论文集[C];2013年
6 肖鹏;申峰;刘赵淼;;微通道中矩形微凹槽内流场的数值模拟[A];北京力学会第19届学术年会论文集[C];2013年
7 肖鹏;申峰;刘赵淼;李易;;凹槽微通道流场的三维数值模拟[A];北京力学会第20届学术年会论文集[C];2014年
8 周继军;刘睿;张政;廖文裕;佘汉佃;;微通道传热中的两相间歇流[A];上海市制冷学会2011年学术年会论文集[C];2011年
9 夏国栋;柴磊;周明正;杨瑞波;;周期性变截面微通道内液体流动与传热的数值模拟研究[A];中国力学学会学术大会'2009论文摘要集[C];2009年
10 娄文忠;Herbert Reichel;;硅微通道致冷系统设计与仿真研究[A];科技、工程与经济社会协调发展——中国科协第五届青年学术年会论文集[C];2004年
相关重要报纸文章 前2条
1 本报记者 陈杰;空调将进入微通道时代[N];科技日报;2008年
2 张亮;美海军成功为未来武器研制微型散热器[N];科技日报;2005年
相关博士学位论文 前10条
1 任滔;微通道换热器传热和制冷剂分配特性的数值模拟和实验验证[D];上海交通大学;2014年
2 翟玉玲;复杂结构微通道热沉流动可视化及传热过程热力学分析[D];北京工业大学;2015年
3 杨珊珊;粗糙微通道流体流动特性的分形分析[D];华中科技大学;2015年
4 伍根生;基于纳米结构的气液相变传热强化研究[D];东南大学;2015年
5 卢玉涛;微通道内气—液两相分散与传质的研究[D];天津大学;2014年
6 逄燕;弹性壁面微通道内液滴/气泡的生成特性研究[D];北京工业大学;2016年
7 余锡孟;微通道反应器中若干有机物液相氧化反应研究及相关数据测定[D];浙江大学;2016年
8 徐博;微通道换热器在家用分体空调应用的关键问题研究[D];上海交通大学;2014年
9 赵亮;电动效应作用下微通道内液体流动特性[D];哈尔滨工业大学;2009年
10 李志华;微通道流场混合与分离特性的研究[D];浙江大学;2008年
相关硕士学位论文 前10条
1 程天琦;新型分合式微通道混合性能的研究[D];西北大学;2015年
2 何颖;三角形截面微通道中流体的流动和换热特性的理论研究和结构优化[D];昆明理工大学;2015年
3 刘雅鹏;垂直磁场作用下平行板微通道内Maxwell流体的周期电渗流[D];内蒙古大学;2015年
4 吴媛媛;制冷压缩冷凝机组中微通道换热器的研究[D];南京理工大学;2015年
5 马晓雯;硅基底表面特性对微通道界面滑移的影响[D];大连海事大学;2015年
6 张志强;微通道蒸发器表面结露工况下性能研究[D];天津商业大学;2015年
7 毛航;二氧化碳微通道气冷器优化设计及分子动力学模拟[D];郑州大学;2015年
8 崔振东;微通道内空化流动传热的Lattice Boltzmann模拟[D];中国科学院研究生院(工程热物理研究所);2015年
9 邱德来;疏水性对微通道流动与换热的影响[D];南京师范大学;2015年
10 张蒙蒙;二氧化碳微通道平行流气冷器流量分配特性研究[D];郑州大学;2015年
,本文编号:1778120
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/1778120.html