TiCN、TiVN薄膜的微结构、力学性能及摩擦磨损性能的研究
本文选题:TiCN复合膜 + TiVN复合膜 ; 参考:《江苏科技大学》2017年硕士论文
【摘要】:本论文采用JGP450型反应磁控溅射仪,在Si片(100)和304不锈钢基底上,制备了一系列不同C含量的TiCN复合膜和不同V含量的TiVN复合膜。分别用扫描电子显微镜(SEM)及附带的能谱仪(EDS)、X射线衍射仪(XRD)、纳米压痕/划痕仪、摩擦磨损试验机和三维形貌仪等对各复合膜的化学成分、截面形貌、微结构、显微硬度、膜基结合力及不同温度下的摩擦磨损性能进行表征并分析。研究结果如下:对于不同C含量的TiCN复合膜的研究表明:室温下制备的TiCN复合膜为面心立方结构,择优取向为TiN(111)晶面,随着C含量的增加,(111)晶面衍射峰逐渐向小角度偏移,且不断宽化、弱化。TiCN复合膜中C原子的存在形式:部分C原子占据TiN晶格中N原子的位置,形成置换固溶体;还有部分C原子以无定形润滑相的形式存在。随着C含量的增加,TiCN复合膜的硬度呈现出先增大后减小的趋势,当C含量为19.10at.%时,复合膜的硬度达到最大,为32GPa。室温下的摩擦磨损实验结果表明:随着C含量的增加,TiCN复合膜的平均摩擦系数逐渐减小,说明C元素的加入能有效改善TiCN复合膜的室温摩擦性能,且C含量越高,摩擦性能越优异。此外,不同C含量的TiCN复合膜室温下的平均磨损率先减小后增大,当C含量为19.10at.%时,磨损率达到最低,为3.76×10-8 mm2N-1。高温下的摩擦磨损实验结果表明:随着环境温度的升高,TiCN复合膜的平均摩擦系数和磨损率均逐渐增大。说明C元素的加入并不能有效改善Ti CN薄膜的高温摩擦磨损性能。对于不同V含量的TiVN复合膜的研究表明:室温下制备的TiVN复合膜为面心立方结构,当V含量为9.48at.%时,Ti VN复合膜中出现了明显的VN(111)晶面衍射峰,此时薄膜为TiVN和VN的双相结构,择优取向始终为TiN(111)晶面,且随着V含量的增加,TiN(111)晶面衍射峰逐渐向大角度偏移。当V含量低于9.48at.%时,Ti VN复合膜中的V原子占据TiN晶格中Ti原子的位置,形成(Ti,V)N置换固溶体;当V原子在薄膜中的固溶度达到饱和时,多余的V原子则与N原子结合以VN的形式存在。随着V含量的增加,Ti VN复合膜的硬度和弹性模量值均先增大后减小:当V含量为4.53at.%时,复合膜的硬度达到最大,为23 GPa,同时弹性模量值也达到最大,为281GPa。室温下的摩擦磨损实验结果表明:TiVN复合膜室温下的平均摩擦系数随着V含量的增加先略升高后逐渐降低,并逐渐稳定在0.66左右。此外,不同V含量的TiVN复合膜室温下的平均磨损率先减小后增大,当V含量为4.53at.%时,磨损率达到最低,为6.88×10-8 mm2N-1。高温下的摩擦磨损实验结果表明:当环境温度低于300℃时,随着环境温度的升高,TiVN复合膜的平均摩擦系数逐渐增大;当环境温度高于300℃时,TiVN复合膜的平均摩擦系数逐渐降低,因为复合膜中形成了具有低剪切模量和自润滑效应的V2O5来充当固体润滑剂,且在700℃时,TiVN复合膜的平均摩擦系数达到最低,为0.44。此外,随着环境温度的升高,Ti VN复合膜的平均磨损率逐渐增大。
[Abstract]:In this paper, a series of TiCN composite films with different C content and TiVN composite films with different V content were prepared on Si (100) and 304 stainless steel substrates by JGP450 reactive magnetron sputtering instrument. The scanning electron microscope (SEM) and the incidental spectrometer (EDS), X ray diffraction instrument (XRD), nano indentation / scratch tester, friction and wear tester and three were used respectively. The chemical composition, cross section morphology, microstructure, microhardness, film base bonding force and friction and wear properties at different temperatures are characterized and analyzed. The results are as follows: the study of TiCN composite films with different C content shows that the TiCN composite film prepared at room temperature is a face centered cubic structure and the preferred orientation is TiN (111) the crystal surface, with the increase of C content, (111) the diffraction peak of the crystal plane is gradually shifted to a small angle and widens continuously, weakening the existence form of C atoms in the.TiCN composite membrane: some C atoms occupy the position of the N atom in the TiN lattice and form the replacement solid solution; and some C atoms exist in the form of amorphous lubricating phase. With the increase of C content, TiCN complex The hardness of the composite film increases first and then decreases. When the content of C is 19.10at.%, the hardness of the composite film reaches the maximum. The result of the friction and wear experiment at 32GPa. room temperature shows that the average friction coefficient of the TiCN composite film decreases with the increase of the C content. It shows that the addition of C element can effectively improve the room temperature friction of the TiCN composite film. And the higher the content of C, the better the friction performance. In addition, the average wear of the TiCN composite film with different C content first decreases and then increases. When the C content is 19.10at.%, the wear rate is the lowest. The friction and wear test results of 3.76 x 10-8 mm2N-1. at high temperature show that the average friction coefficient of the TiCN composite film is increased with the increase of the ambient temperature. The addition of the C element does not effectively improve the high temperature friction and wear properties of the Ti CN film. The study on the TiVN composite film with different V content shows that the TiVN composite film prepared at room temperature is a face centered cubic structure. When the V content is 9.48at.%, the obvious VN (111) plane diffraction peak appears in the Ti VN complex film. At this time, the film is a dual phase structure of TiVN and VN, and the preferred orientation is always TiN (111). And with the increase of V content, the TiN (111) diffraction peak is gradually shifted to a large angle. When V content is lower than 9.48at.%, V atoms in the Ti VN composite film occupy the position of Ti atoms in the TiN lattice and form the solid solution, when the atom is solid in the film. When the solubility reaches saturation, the superfluous V atom is combined with the N atom in the form of VN. With the increase of V content, the hardness and modulus of elasticity of the Ti VN composite film increase first and then decrease. When the V content is 4.53at.%, the hardness of the composite film reaches the maximum, which is 23 GPa, and the modulus of elasticity reaches the maximum, which is a friction mill at 281GPa. room temperature. The loss test results show that the average friction coefficient of TiVN composite film increases slightly at room temperature and gradually decreases with the increase of V content, and gradually stabilizes at about 0.66. In addition, the average wear of TiVN composite films with different V content decreases first and then increases. When V content is 4.53at.%, the wear rate reaches the lowest, which is 6.88 x 10-8 mm2N-1. high. The experimental results show that the average friction coefficient of TiVN composite film increases with the increase of ambient temperature when the ambient temperature is below 300 C, and the average friction coefficient of TiVN composite film decreases gradually when the ambient temperature is higher than 300, because the V2O5 with low shear modulus and self lubrication effect is formed in the composite film. To act as a solid lubricant, the average friction coefficient of the TiVN composite film reaches the lowest at 700 C and is 0.44.. The average wear rate of the Ti VN composite film increases with the increase of the ambient temperature.
【学位授予单位】:江苏科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TG174.4;TB383.2
【参考文献】
相关期刊论文 前10条
1 胡红霞;许俊华;喻利花;;V含量对(Nb,V)N复合膜微结构、力学性能与摩擦性能的影响[J];粉末冶金材料科学与工程;2014年04期
2 马冰洋;喻利花;许俊华;;V含量对ZrVCN薄膜微结构及力学性能与摩擦性能的影响[J];粉末冶金材料科学与工程;2013年06期
3 许俊华;曹峻;喻利花;;磁控溅射制备TiCN复合膜的微结构与性能[J];中国有色金属学报;2012年11期
4 许俊华;曹峻;喻利花;;TiVCN复合膜的微结构、力学性能与摩擦磨损性能研究[J];金属学报;2012年05期
5 喻利花;马冰洋;许俊华;;C含量对ZrCN薄膜结构和力学性能的影响[J];金属学报;2012年05期
6 周颐辛;祝新发;张晶晶;钟宁;李戈扬;;离子镀TiCN和TiN工具涂层的微结构与切削性能[J];工具技术;2010年11期
7 谈淑咏;张旭海;李纪宏;吴湘君;蒋建清;;基底负偏压对直流磁控溅射CrN薄膜择优取向及表面形貌的影响[J];功能材料;2010年06期
8 汪蕾;董师润;尤建飞;喻利花;李学梅;许俊华;;Ti(C,N)复合膜和TiN/Ti(C,N)多层膜组织和显微硬度[J];材料热处理学报;2010年02期
9 ;Microstructure and Mechanical Properties of Multilayer Ti(C,N) Films by Closed-field Unbalanced Magnetron Sputtering Ion Plating[J];Journal of Materials Science & Technology;2010年02期
10 瞿全炎;邱万奇;曾德长;刘正义;;划痕法综合评定膜基结合力[J];真空科学与技术学报;2009年02期
,本文编号:1795167
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/1795167.html