数控内齿强力珩齿机动态及热特性研究
发布时间:2018-05-23 08:25
本文选题:强力珩齿 + 内啮合 ; 参考:《合肥工业大学》2017年硕士论文
【摘要】:随着现代制造业的不断发展,人们对于齿轮加工精度和表面纹理的要求越来越高。目前齿轮精加工工艺主要为磨齿和珩齿,两者均能获得较好的加工精度,区别在于通过珩齿加工后的齿轮表面纹理具有一定的随意性,相对于磨齿加工出的齿轮在传动中的噪声低。内啮合珩齿是现代强力珩齿机采用较多的一种形式,加工效率较高,可以实现齿廓齿向修型的同时改善齿轮表面纹理。Y4830CNC数控内齿强力珩齿机是国内首台高档数控内齿强力珩齿机,为保证其加工性能,本文在该机床设计研发阶段对其动态及热特性进行了研究与分析。本文的研究内容主要包括以下几点:1.阐述了使用有限元法对数控内齿强力珩齿机进行动态及热特性分析的基本原理,在三维软件中构建了机床三维模型并进行简化,既而得到机床动态及热特性分析有限元模型;2.对整机及关键零部件进行了模态仿真分析,得到整机及关键零部件的各阶模态参数。通过模态试验验证了有限元模型的正确性,并基于模态仿真及试验结果对机床关键零部件的结构进行了优化;3.分析计算了珩齿机主要热源的发热量及热边界条件,并使用热-结构耦合法对整机及主轴系统进行热特性分析,得到了机床的温度场及热变形场。重点分析了珩齿机主轴系统热变形对齿轮加工精度的影响,并详细设计了主轴系统热变形测量实验;4.根据热特性分析结果,提取了不同位置点处测温点温度及热变形数据,采用模糊聚类和最大相关系数法对测温点进行筛选,最终选择了4个测温点作为构建珩齿机主轴系统热误差预测模型的输入变量;5.分别使用多元线性回归算法、广义回归神经网络算法和基于粒子群算法的广义回归神经网络算法(PSO-GRNN)建立了珩齿机主轴系统热误差预测模型,并比较了不同方法的优缺点及预测效果,同时给出了珩齿机主轴系统热误差补偿系统设计方案。
[Abstract]:With the development of modern manufacturing industry, the requirement of gear machining precision and surface texture is becoming higher and higher. At present, the gear finishing process is mainly grinding and honing, both of which can obtain good machining accuracy. The difference is that the surface texture of gear after honing has a certain degree of arbitrariness. The noise in transmission is low compared to the gear machined by grinding teeth. Internal gear honing is a form of modern powerful honing machine, which has high processing efficiency. It is the first high-grade CNC internal tooth honing machine in China to realize tooth profile modification and improve gear surface texture. Y4830 CNC internal tooth honing machine is the first high-grade internal tooth honing machine in China to guarantee its processing performance. In this paper, the dynamic and thermal characteristics of the machine are studied and analyzed in the design and development stage. The research content of this paper mainly includes the following points: 1. In this paper, the basic principle of dynamic and thermal characteristic analysis of numerical control internal tooth honing machine with finite element method is expounded. The three-dimensional model of machine tool is constructed and simplified in 3D software, and the finite element model of dynamic and thermal characteristic analysis of machine tool is obtained. The modal analysis of the whole machine and the key parts is carried out, and the modal parameters of the whole machine and the key parts are obtained. The validity of the finite element model is verified by modal test, and the structure of key parts of machine tool is optimized based on modal simulation and test results. The heat generation and thermal boundary conditions of the main heat source of honing machine are analyzed and the thermal characteristics of the whole machine and the main shaft system are analyzed by using the thermal-structural coupling method. The temperature field and thermal deformation field of the machine tool are obtained. The influence of thermal deformation on gear machining accuracy of main shaft system of honing machine is analyzed emphatically, and the experiment of measuring thermal deformation of spindle system is designed in detail. According to the results of thermal characteristic analysis, the temperature and thermal deformation data of temperature measuring points at different locations were extracted, and the temperature measuring points were screened by fuzzy clustering and maximum correlation coefficient method. Finally, four temperature measuring points are selected as input variables to build the thermal error prediction model of honing machine spindle system. The thermal error prediction model of honing machine spindle system is established by using multivariate linear regression algorithm, generalized regression neural network algorithm and PSO -GRNN algorithm based on particle swarm optimization, respectively. The advantages and disadvantages of different methods and the prediction results are compared. At the same time, the design scheme of heat error compensation system for the main shaft system of honing machine is presented.
【学位授予单位】:合肥工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TG659
【参考文献】
相关期刊论文 前10条
1 韩江;赵飞虎;夏链;;基于结合面特性的强力珩齿机动力学分析[J];制造技术与机床;2016年09期
2 郭召;;珩齿工艺的技术现状及发展趋势[J];制造技术与机床;2016年07期
3 朱俊;韩江;许家凯;夏链;;大型数控镗铣床基于灵敏度分析的轻量化设计[J];合肥工业大学学报(自然科学版);2016年06期
4 范晋伟;王鸿亮;张兰清;陈东菊;;数控磨床床身的有限元分析及结构改进[J];制造业自动化;2016年05期
5 张魁榜;韩江;夏链;杨清艳;;齿轮成形磨削加工热力耦合数值仿真研究[J];合肥工业大学学报(自然科学版);2015年10期
6 谢习华;徐雷;谭耀;马云荣;;基于PSO-GRNN的直升机旋翼不平衡故障诊断[J];噪声与振动控制;2015年02期
7 余文利;姚鑫骅;孙磊;傅建中;;基于PLS和改进CVR的数控机床热误差建模[J];农业机械学报;2015年02期
8 郭松路;刘德平;钱谦;孙建勇;;立式加工中心整机热特性有限元分析[J];机械设计与制造;2014年02期
9 李发宗;童水光;王相兵;;基于模态分析的液压挖掘机工作装置动态优化设计[J];农业机械学报;2014年04期
10 韩江;姜小飞;夏链;田晓青;;数控滚齿机刀架温度场及热误差仿真分析[J];合肥工业大学学报(自然科学版);2013年11期
,本文编号:1923996
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/1923996.html