双机器人齿盘协同堆焊生产线关键技术研究
发布时间:2018-06-08 11:41
本文选题:双机器人协同 + CMT曲面堆焊工艺 ; 参考:《浙江大学》2017年硕士论文
【摘要】:履带式装甲车是一种集火力、机动、防护性等特点于一体的军事车辆。履带驱动轮作为履带式装甲车行走系统的重要组成部分,其加工精度以及耐磨特性直接影响车辆的行走稳定性和可靠性。在制造过程中,履带驱动轮需在齿形上堆焊上耐磨金属材料。论文针对目前齿盘表面堆焊工艺多为手动或半自动,焊接效率低下,加工精度不高,焊后需打磨等问题,研究CMT曲面堆焊工艺,提出齿盘表面近净成形堆焊加工方法,并集成双机器人协同堆焊技术、CMT无飞溅焊接技术、焊接质量在线检测技术以及总线控制技术,最终形成一套全自动的双机器人齿盘协同堆焊生产线,实现齿盘的自动上料、协同焊接、焊后质量检测以及分料码垛。首先,阐述了论文的研究背景与研究意义,综述了堆焊技术的研究现状以及焊接质量检测技术的研究现状,简要概述了论文的主要研究内容与各章安排,随后提出了论文的总体框架。然后,分析了熔化极气体保护焊的熔滴过渡过程,阐述了 CMT可控短路过渡技术,确定了基于田口方法和灰度系统理论的曲面堆焊工艺参数优化流程,并概述了田口方法基本理论和灰色系统理论。接着,分析了齿盘堆焊加工要求,提出了双机器人齿盘协同生产线的设计目标,在此基础上给出了生产线的总体设计方案,并分别从上料工位、焊接工位、视觉检测工位、码垛工位和系统总控单元入手详细设计了生产线各部分,搭建了基于PC的软PLC系统的硬件平台,详细设计了工业现场控制程序、焊接质量检测程序以及人机交互界面,形成一套完整的双机器人齿盘协同堆焊生产线。最后,分析机器人齿面堆焊特点,将曲面堆焊模型近似为平面堆焊模型,并在充分考虑工件堆焊技术要求的基础上,采用田口方法和灰度系统理论获得机器人CMT平面堆焊参数,最终通过试验确定齿面堆焊参数,实现齿盘表面近净成形堆焊加工。论文研制了双机器人齿盘协同堆焊生产线,经试运行检验后,各项指标均满足设计要求。
[Abstract]:Tracked armored vehicle is a kind of military vehicle with the characteristics of firepower, maneuverability and protection. Caterpillar drive wheel is an important part of tracked armored vehicle walking system. Its machining accuracy and wear resistance directly affect the running stability and reliability of the vehicle. In the manufacturing process, the caterpillar drive wheel needs to surfacing on the tooth profile on the wear-resistant metal material. Aiming at the problems of manual or semi-automatic surfacing welding technology, low welding efficiency, low machining precision and need to be polished after welding, the paper studies the surfacing welding technology of CMT curved surface, and puts forward the method of surface surfacing welding. The technology of CMT without spatter welding, on-line inspection of welding quality and bus control technology are integrated. Finally, a set of automatic double-robot cooperative surfacing welding production line is formed to realize the automatic feeding of tooth disk. Cooperative welding, quality inspection after welding and stacking of separate materials. First of all, the research background and significance of the paper are described, the research status of surfacing technology and welding quality testing technology are summarized, and the main research content and the arrangement of each chapter are briefly summarized. Then the overall framework of the paper is proposed. Then, the droplet transfer process of gas shielded arc welding is analyzed, the CMT controlled short circuit transfer technology is described, and the optimization process of surface surfacing parameters based on Taguchi method and gray system theory is determined. The basic theory of Taguchi method and the theory of grey system are summarized. Then, the paper analyzes the requirements of tooth plate surfacing welding, and puts forward the design goal of the double robot tooth disk cooperative production line. On this basis, the overall design scheme of the production line is given, and the feeding, welding and visual inspection stations are given respectively. Each part of the production line is designed in detail, the hardware platform of the soft PLC system based on PC is built, and the industrial field control program, welding quality detection program and man-machine interface are designed in detail. To form a complete double robot tooth plate co-surfacing production line. Finally, the characteristics of robot tooth surfacing welding are analyzed, and the curved surfacing model is approximate to the plane surfacing welding model. On the basis of fully considering the technical requirements of workpiece surfacing welding, the parameters of robot CMT plane surfacing welding are obtained by using Taguchi method and gray scale system theory. Finally, the tooth surface surfacing parameters are determined by experiments, and the near net forming surfacing process of tooth disk surface is realized. In this paper, a double robot joint surfacing production line is developed, and the test results show that each index can meet the design requirements.
【学位授予单位】:浙江大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TJ810.5;TG409
【参考文献】
相关期刊论文 前10条
1 李磊;;汽车半轴45钢的表层堆焊修复及焊后热处理[J];工具技术;2016年01期
2 王明耀;刘奋成;贺立华;黄冠棋;钱鲁泓;;层层正交路径MIG堆焊316L不锈钢的组织和力学性能[J];热加工工艺;2015年17期
3 李红英;;中心极限定理的教学[J];考试周刊;2015年31期
4 李勇;贺定勇;索红莉;周正;蒋建敏;王智慧;;等离子弧堆焊TiC增强NiTi合金的组织和耐磨性[J];材料热处理学报;2013年03期
5 张洪涛;冯吉才;胡乐亮;;CMT能量输入特点与熔滴过渡行为[J];材料科学与工艺;2012年02期
6 李进;李刚;杨亚涛;;热丝TIG焊在核电蒸汽发生器下封头接管中的应用[J];焊接技术;2012年03期
7 刘铁军;刘贵强;袁广;刘久良;韩文达;;埋弧堆焊技术在油缸生产中的应用研究[J];煤矿机械;2012年01期
8 赵云飞;成艾国;黄清敏;董立强;;田口鲁棒设计用于汽车动力总成悬置系统[J];计算机仿真;2011年12期
9 刘思峰;J.福雷斯特;;不确定性系统与模型精细化误区[J];系统工程理论与实践;2011年10期
10 杨晓锋;王顺尧;张超;张海燕;姚婷婷;刘志兵;张江伟;;CMT工艺应用及其研究现状[J];产业与科技论坛;2011年15期
,本文编号:1995669
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/1995669.html