微通道内液—液不互溶两相界面控制及原位金属互连
本文选题:微流控 + 不互溶两相流 ; 参考:《哈尔滨工业大学》2017年硕士论文
【摘要】:微流控技术是一门涉及流体力学、化学工程、生物工程、微纳技术等多个领域的交叉学科。随着制造和集成技术的提高,微流控器件向多功能化和智能化方向发展,其中电互连是基本条件。本文利用低雷诺数下的不互溶两相平行流界面开展原位金属互连研究。本文利用U形压力计和高压气瓶作为压力源设计搭建了复合气压驱动装置。该装置具有压力分辨率高、压力调节范围大的优点,为精确控制两相界面打下基础。重复性测试实验中发现通道壁面性质影响两相界面形态。当利用U形压力计进行驱动时,平行流界面稳定的时间超过0.5h。本文以驱动压力为参数,在宽度为240μm高度为10μm的Y型微通道内绘制油酸/水两相流型图。压力驱动可以容易地通过分析界面的受力平衡研究流型的转变。本文重点研究平行流和其他流型之间的转变。实验通过改变表面活性剂浓度、温度和壁面条件研究液-液相互作用和固-液相互作用对流型转变的影响。实验结果表明固-液相互作用对低雷诺数下的流型转变有明显的影响。通过在出口接入一定程度的真空,可以减弱固-液相互作用,从而使得两相流体的流阻明显减小。实验中在没有对通道壁面进行修饰,也未加入表面活性剂的情况下,得到雷诺数Re10~(-2)的平行流,并且可以稳定1~3h。本文利用油酸铜正辛醇溶液-抗坏血酸水溶液不互溶两相进行原位合成金属研究。为了对微通道内界面反应产物进行表征,利用掩膜对键合面进行选择性氧等离子处理,设计出一种易拆卸同时密封性好的键合方式。利用该键合方式制作的微流控芯片可以在保持微通道内界面反应产物原始状态的前提下方便地打开。实验成功制备出局部连续的铜亚微米-微米线。铜亚微米-微米线主要是由排列在一起的“杯状”颗粒组成。本文提出两相界面反应主要由乳化和扩散两方面控制。两相首先在平行流界面处发生反应,使得界面附近反应物浓度发生变化,与此同时两相界面张力也发生变化。这些变化导致界面的变得不稳定,出现乳化现象。界面乳化形成的乳滴作为软模板,纳米颗粒吸附在乳滴两相界面上。不断扩散过来的反应物继续在乳滴界面上发生反应。通过纳米颗粒的自组装和长大得到“杯状”颗粒,最后制备出局部连续的铜亚微米-微米线。通过对界面反应的影响因素进行分析,指出控制界面张力和界面稳定性是提高界面反应产物连续性的关键。
[Abstract]:In this paper , the influence of liquid - liquid interaction and solid - liquid interaction on convection type transition is studied by using U - shaped pressure gauge and high pressure gas cylinder as pressure source .
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TG111
【相似文献】
相关期刊论文 前10条
1 潘敏强;汤勇;陆龙生;潘亮;曾德怀;;非等宽微通道阵列速度均布的优化设计[J];化工学报;2007年09期
2 陈永平;肖春梅;施明恒;吴嘉峰;;微通道冷凝研究的进展与展望[J];化工学报;2007年09期
3 胡雪;魏炜;雷建都;马光辉;苏志国;王化军;;T型微通道装置制备尺寸均一壳聚糖微球[J];过程工程学报;2008年01期
4 甘云华;杨泽亮;;轴向导热对微通道内传热特性的影响[J];化工学报;2008年10期
5 杨凯钧;左春柽;丁发喜;王克军;吕海武;曹倩倩;王吉顺;;微通道散热器长直微通道的新加工工艺研究[J];吉林化工学院学报;2011年09期
6 付涛涛;朱春英;王东继;季喜燕;马友光;;微通道内气液传质特性[J];化工进展;2011年S2期
7 卜永东;沈寅麒;杜小泽;杨立军;杨勇平;;仿蜂巢微通道分叉结构的甲醇重整制氢[J];化工学报;2013年06期
8 宋善鹏;于志家;刘兴华;秦福涛;方薪晖;孙相_g;;超疏水表面微通道内水的传热特性[J];化工学报;2008年10期
9 李彩霞;王斯民;胡鹏睿;;等壁温下平行微通道内层流换热的数值模拟[J];化学工程;2012年03期
10 李鑫;陈永平;吴嘉峰;施明恒;;宽矩形硅微通道中流动冷凝的流型[J];化工学报;2009年05期
相关会议论文 前10条
1 史东山;李锦辉;刘赵淼;;关于微通道相关问题研究方法现状分析[A];北京力学会第18届学术年会论文集[C];2012年
2 逄燕;刘赵淼;;温黏关系对微通道内液体流动和传热性能的影响[A];北京力学会第18届学术年会论文集[C];2012年
3 范国军;逄燕;刘赵淼;;微通道中液体流动和传热特性的影响因素概述[A];北京力学会第18届学术年会论文集[C];2012年
4 刘丽昆;逄燕;刘赵淼;;几何参数对微通道液体流动和传热性能影响的研究[A];北京力学会第18届学术年会论文集[C];2012年
5 刘丽昆;刘赵淼;申峰;;几何参数对微通道黏性耗散影响的研究[A];北京力学会第19届学术年会论文集[C];2013年
6 肖鹏;申峰;刘赵淼;;微通道中矩形微凹槽内流场的数值模拟[A];北京力学会第19届学术年会论文集[C];2013年
7 肖鹏;申峰;刘赵淼;李易;;凹槽微通道流场的三维数值模拟[A];北京力学会第20届学术年会论文集[C];2014年
8 周继军;刘睿;张政;廖文裕;佘汉佃;;微通道传热中的两相间歇流[A];上海市制冷学会2011年学术年会论文集[C];2011年
9 夏国栋;柴磊;周明正;杨瑞波;;周期性变截面微通道内液体流动与传热的数值模拟研究[A];中国力学学会学术大会'2009论文摘要集[C];2009年
10 娄文忠;Herbert Reichel;;硅微通道致冷系统设计与仿真研究[A];科技、工程与经济社会协调发展——中国科协第五届青年学术年会论文集[C];2004年
相关重要报纸文章 前2条
1 本报记者 陈杰;空调将进入微通道时代[N];科技日报;2008年
2 张亮;美海军成功为未来武器研制微型散热器[N];科技日报;2005年
相关博士学位论文 前10条
1 任滔;微通道换热器传热和制冷剂分配特性的数值模拟和实验验证[D];上海交通大学;2014年
2 翟玉玲;复杂结构微通道热沉流动可视化及传热过程热力学分析[D];北京工业大学;2015年
3 伍根生;基于纳米结构的气液相变传热强化研究[D];东南大学;2015年
4 卢玉涛;微通道内气—液两相分散与传质的研究[D];天津大学;2014年
5 逄燕;弹性壁面微通道内液滴/气泡的生成特性研究[D];北京工业大学;2016年
6 余锡孟;微通道反应器中若干有机物液相氧化反应研究及相关数据测定[D];浙江大学;2016年
7 徐博;微通道换热器在家用分体空调应用的关键问题研究[D];上海交通大学;2014年
8 赵恒;大功率轴快流CO_2激光器射频激励源的研究[D];华中科技大学;2016年
9 赵亮;电动效应作用下微通道内液体流动特性[D];哈尔滨工业大学;2009年
10 李志华;微通道流场混合与分离特性的研究[D];浙江大学;2008年
相关硕士学位论文 前10条
1 程天琦;新型分合式微通道混合性能的研究[D];西北大学;2015年
2 何颖;三角形截面微通道中流体的流动和换热特性的理论研究和结构优化[D];昆明理工大学;2015年
3 刘雅鹏;垂直磁场作用下平行板微通道内Maxwell流体的周期电渗流[D];内蒙古大学;2015年
4 吴媛媛;制冷压缩冷凝机组中微通道换热器的研究[D];南京理工大学;2015年
5 马晓雯;硅基底表面特性对微通道界面滑移的影响[D];大连海事大学;2015年
6 张志强;微通道蒸发器表面结露工况下性能研究[D];天津商业大学;2015年
7 毛航;二氧化碳微通道气冷器优化设计及分子动力学模拟[D];郑州大学;2015年
8 崔振东;微通道内空化流动传热的Lattice Boltzmann模拟[D];中国科学院研究生院(工程热物理研究所);2015年
9 邱德来;疏水性对微通道流动与换热的影响[D];南京师范大学;2015年
10 张蒙蒙;二氧化碳微通道平行流气冷器流量分配特性研究[D];郑州大学;2015年
,本文编号:2062695
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2062695.html