超高压水射流切割机增压器性能有限元分析
本文选题:增压器 + 自增强 ; 参考:《江苏大学》2017年硕士论文
【摘要】:超高压水射流技术是近30年来发展起来的一种新兴技术,在包括农业工程在内的工业各领域得到了广泛的应用。作为超高压水射流设备的核心部件,增压器对整个超高压水射流设备的性能有着重要影响。我国对其性能的研究与国外相比还存在较大的差距,而国外处于技术保密的原因,公布的资料非常少,从国内企业到国外公司参观交流了解到增压器的新产品开发已全面采用CAE技术。因此,采用CAE技术进行增压器性能的研究对提升企业新产品的开发十分迫切。本文以某企业的超高压水射流切割设备的增压器为研究对象,采用有限元分析技术对400MPa与600MPa增压器进行应力分析与疲劳寿命性能分析,主要研究工作及成果如下:(1)阐述了超高压水射流设备的液压原理和增压器的工作原理,得到了高压缸筒体的应力分布规律,介绍了高压容器自增强理论;探讨了增压器有限元性能分析软件的选择原则并给出了增压器有限元性能分析的技术路线方案;(2)对高压缸与堵塞进行自增强有限元分析,在此基础上建立了400MPa增压器装配体有限元模型。对400MPa增压器进行有限元分析,得到了380MPa和400MPa工作压力下的最大应力分别为532.864MPa和545.367MPa。结果表明:高压缸与缸盖连接一端的内壁端部以及高压缸壁厚1/4-1/3区域应力较大,在交变载荷长期循环作用下容易发生疲劳破坏;端盖和缸盖螺纹连接处应力分析结果较大,可能会发生咬合现象;堵塞的最大应力值均出现在通气孔交接处,此处由于应力集中易发生疲劳破坏。这些与企业现有性能测试实验十分吻合。(3)利用MSC.Fatigue进行400MPa增压器的疲劳寿命分析,得到了在380MPa工作压力下增压器的疲劳寿命分析结果为8.83×106次循环,工作时间为2453小时;在400MPa工作压力作用下,增压器的疲劳寿命分析结果为6.4×106次循环,工作时间为1775小时。这些与企业实际运行寿命较好的吻合,达到了400MPa增压器实际工作寿命需求。(4)建立了600MPa增压器的有限元模型,通过对1080MPa、970MPa、950MPa、940MPa、920MPa、900MPa六种自增强压力下的分析结果进行对比,确定了最佳自增强压力约为970MPa,与理论计算获得的最佳自增强压力970.25MPa相符合。接着探讨了增压器装配体的预紧力,为后续应力与疲劳寿命有限元分析工作奠定基础。(5)对600MPa增压器进行有限元分析,得到了600MPa和560MPa工作压力下的最大应力分别为564.668MPa和554.885MPa。结果表明:高压缸与堵塞连接的端部以及高压缸壁厚1/4-1/3区域存在较大应力,容易发生疲劳破坏;螺杆和螺母的应力值没有达到材料的屈服强度,不易发生拉断及咬合现象;端盖和缸盖的应力值也未达到材料的屈服强度,因此不易发生疲劳破坏。(6)利用MSC.Fatigue进行600MPa增压器的疲劳寿命分析,得到了在预紧力96000N、工作压力600MPa作用下的疲劳寿命分析结果为4.46×106次循环,工作时间为929小时;在预紧力90000N、工作压力560MPa作用下的疲劳寿命分析结果为6.06×106次循环,工作时间为1262小时。这些结果说明,现有企业新设计的增压器均达不到增压器至少工作1500小时以上的要求。最后针对600MPa增压器疲劳寿命无法达到要求的问题,提出了更换高压缸材料及改进高压缸结构两种改进措施,为企业提供参考。本文400MPa有限元应力分析与疲劳寿命分析与现有企业性能测试实验结果对比证明有限元分析技术应用在高压容器性能分析上是可靠的,也有力说明CAE技术可以是增压器开发必不可缺少的一种技术手段。另外为企业验证了新开发的一个600MPa增压器的可行性问题,为企业降低了投资风险。
[Abstract]:Ultra high pressure water jet technology is a new technology developed in the past 30 years. It has been widely used in various fields including agricultural engineering. As the core component of UHP water jet equipment, supercharger has an important influence on the performance of the UHP water jet equipment. There is a larger gap than that, and the reasons for the technology confidentiality abroad, the published information is very small, from domestic enterprises to foreign companies to understand the new product development of supercharger has been fully adopted CAE technology. Therefore, the use of CAE technology to improve the performance of turbocharger is very urgent to promote the development of new products. Taking the supercharger of the ultra high pressure water jet cutting equipment of a certain enterprise as the research object, the stress analysis and fatigue life performance analysis of 400MPa and 600MPa supercharger are carried out by the finite element analysis technology. The main research work and results are as follows: (1) the hydraulic principle of the UHP water jet equipment and the working principle of the supercharger are expounded. The stress distribution law of the cylinder body is introduced, the self reinforcement theory of high pressure vessel is introduced, the selection principle of the performance analysis software of the supercharger finite element is discussed and the technical route scheme of the performance analysis of the supercharger is given. (2) the self reinforcement finite element analysis of the high pressure cylinder and the blockage is carried out, and the assembly body of the 400MPa supercharger is established on this basis. Finite element analysis of the 400MPa supercharger is carried out. The maximum stress under the working pressure of 380MPa and 400MPa is 532.864MPa and 545.367MPa., respectively. The results show that the end of the inner wall at the end of the high pressure cylinder and the cylinder head and the thick 1/4-1/3 area of the high pressure cylinder wall are more stress, and it is easy to wear out under the long-term cyclic loading of the alternating load. The stress analysis results of the end cover and the cylinder head thread connection are large, and the occlusal phenomenon may occur. The maximum stress value of the blockage appears at the junction of the air hole and the stress concentration is easy to occur. These are in good agreement with the existing performance test experiments of the enterprise. (3) the fatigue life of the 400MPa supercharger is carried out by MSC.Fatigue. The results of the fatigue life analysis of the supercharger under the working pressure of 380MPa are 8.83 x 106 cycles and the working time is 2453 hours. Under the action of 400MPa working pressure, the fatigue life analysis result of the supercharger is 6.4 x 106 cycles and the working time is 1775 hours. These are in good agreement with the actual operating life of the enterprise, and the results are in good agreement with the actual operation life of the enterprise. The actual working life demand of the 400MPa supercharger. (4) the finite element model of the 600MPa supercharger is established. By comparing the analysis results under the six self reinforcing pressures of 1080MPa, 970MPa, 950MPa, 940MPa, 920MPa and 900MPa, the optimum self reinforcement pressure is determined to be about 970MPa, which is in accordance with the best self reinforcing pressure 970.25MPa phase obtained from the theoretical calculation. The pretightening force of the assembly body of the supercharger is discussed. (5) the finite element analysis of the 600MPa supercharger is carried out. The maximum stress under the working pressure of 600MPa and 560MPa is 564.668MPa and 554.885MPa., respectively: the end of the high pressure cylinder and the plug connection and the high pressure cylinder The wall thickness 1/4-1/3 region has large stress and fatigue damage easily; the stress value of screw and nut does not reach the yield strength of the material, and it is not easy to break and bite. The stress value of the end cover and cylinder head is not reached the yield strength of the material, so it is not easy to cause fatigue damage. (6) the fatigue of the 600MPa supercharger is used by MSC.Fatigue. Fatigue life analysis shows that the fatigue life analysis results under the pretightening force 96000N and working pressure 600MPa are 4.46 x 106 cycles, working time is 929 hours, and the fatigue life analysis results under the pretightening force 90000N and working pressure 560MPa are 6.06 x 106 cycles and the working time is 1262 hours. These results show that the existing enterprise The supercharger of the new design can not reach the requirement of at least 1500 hours for the supercharger. Finally, aiming at the problem that the fatigue life of the 600MPa supercharger is unable to meet the requirements, two improvement measures for replacing the high pressure cylinder material and improving the high pressure cylinder structure are put forward to provide the reference for the enterprise. The stress analysis and fatigue life analysis of the finite element method and the fatigue life analysis in this paper are made in this paper. The comparison of the existing performance test results shows that the application of the finite element analysis technology is reliable on the performance analysis of the high pressure vessel. It also proves that the CAE technology can be a technical means that the turbocharger development must not be lacking. In addition, the feasibility of a newly developed 600MPa supercharger is verified by the enterprise, and the enterprise is reduced to the enterprise. Investment risk.
【学位授予单位】:江苏大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TG48
【参考文献】
相关期刊论文 前10条
1 周思柱;严奉林;李宁;陆英娜;王鹏;易文君;吕博;;超高压阀体自增强及疲劳寿命分析[J];液压与气动;2014年02期
2 姚伟;;浅谈CAE技术现状及发展趋势[J];科技创新导报;2011年27期
3 袁格侠;刘宏昭;范彩霞;王娟平;王胜;;自增强超高压容器残余应力分析[J];中国机械工程;2011年05期
4 贾红光;;基于ANSYS的厚壁圆筒的弹塑性应力分析[J];青海大学学报(自然科学版);2010年03期
5 朱瑞林;;圆筒形压力容器自增强若干问题研究[J];机械工程学报;2010年06期
6 傅彩虹;;运用CAE技术的有限元分析[J];烟台职业学院学报;2009年01期
7 高军伟;谢光伟;周后俊;周魁;;自增强技术的研究[J];机械研究与应用;2008年06期
8 赵玉生;赵俊芳;;初探食品工业中的超高压灭菌技术[J];食品工程;2006年04期
9 熊珍兵;罗会信;;基于HyperMesh的有限元前处理技术[J];排灌机械;2006年03期
10 张于贤;;水射流切割技术中高压缸的设计研究[J];煤矿机械;2006年05期
相关博士学位论文 前2条
1 张凤莲;磨料水射流切割工程陶瓷机理及关键技术的研究[D];大连交通大学;2010年
2 张于贤;超高压容器中的自增强理论的研究及应用[D];重庆大学;2005年
相关硕士学位论文 前10条
1 刘睿颖;超高压射流技术用于啤酒灭菌的可行性研究[D];西南交通大学;2012年
2 耿鹏飞;高压水射流切割工艺参数的研究[D];燕山大学;2012年
3 章宏令;超高压厚壁容器中的自增强机理的研究[D];安徽理工大学;2011年
4 王海波;超高压水射流装置液压系统的仿真研究[D];杭州电子科技大学;2011年
5 孙书蕾;水射流增压系统及机床结构分析[D];西华大学;2010年
6 姜学艳;GYF300型超高压水晶釜筒体自增强处理有限元仿真与残余应力分析[D];内蒙古工业大学;2007年
7 董庆华;数控高压水射流切割机的研究与设计[D];合肥工业大学;2007年
8 杨桂林;磨料水射流切割断面质量控制的研究[D];西华大学;2006年
9 贾晶晶;超高压容器自增强损伤研究[D];大庆石油学院;2006年
10 吴军;基于有限元技术的增压器优化设计与分析[D];东南大学;2006年
,本文编号:2116777
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2116777.html