铝铜搅拌摩擦焊搭接接头的组织性能及金属迁移行为研究
[Abstract]:1060 aluminum alloy and T2 copper are widely used in the industrial field because of their good physical and mechanical properties. The connection of aluminum and copper dissimilar metals is also one of the hot research topics at home and abroad. Friction stir welding (FSW), as a solid metal bonding method, is often used to connect non-ferrous metals such as aluminum, magnesium and copper. The friction stir welding process of aluminum and copper dissimilar metals is still in the experimental stage, and there are few reports on the metal transfer behavior in the aluminum copper dissimilar metal lap joints. The study and innovation of aluminum copper friction stir welding lap welding technology is of fundamental significance for the application of 1060 aluminum alloy and T2 copper, and the study of metal flow behavior of joints is of guiding significance to improve the joint properties. In this paper, friction stir welding (FSW) is used to test 1060 aluminum alloy plate with thickness 6mm and T2 copper plate with 2mm thickness. The second welding is carried out on the basis of Al-Cu double layer joint to form the Cu-Al-Cu three-layer joint. The second lap weld is called the second weld. The microstructure, mechanical properties and metal flow behavior of Al-Cu lap joints were studied by changing the welding process parameters, lap material combinations and the length of agitated needles. The results show that the shear strength of the weld can reach 96.5mm of the aluminum base metal and 43.4 of the copper base metal under the rotating rate of the stirring head n = 800rpm, and the welding speed of v=90mm/min. The weld seam with good surface forming is obtained when the weld surface is formed at 80mm / min. The shear strength of the weld is 96.5mm / min of the aluminum base metal, and that of the copper base metal is 43.4mm / min. The intermetallic compounds CuAl2 and Cu9Al4were formed by eutectic reaction in the weld. In the copper-aluminum-copper three-layer joint, the area of high hardness microstructure in the joint was enlarged by secondary welding, and the peak hardness was increased. The macroscopic defect of the second weld was more than that of the first weld, and the shear strength was generally lower than that of the first weld. When the material thickness is constant, the longer the stirring needle is, the worse the weld formability and joint strength are. The metal flow behavior in the cross section, longitudinal section, shoulder friction plane and aluminum copper interface plane of the lap joint specimen is analyzed. It is found that the plastic metal migration in the weld thickness direction is divided into three regions: the horizontal circular movement of the metal in the axial shoulder disturbance zone. In turbulent region, the convection movement of metal in vertical direction and the elliptical circulation of metal in agitated zone occur. In the axial shoulder friction plane, the plastic metal moves along the radial direction at the forward side on the one hand, and to the welding direction on the other hand by the shaft shoulder. In the interface plane of aluminum and copper, a large number of aluminum and copper migrated to form mixed structure, and the mixed structure moved in a short distance. Secondary welding reduces the mixed microstructure in turbulent zone of weld section, reduces the radial migration distance of planar metal at the interface between aluminum and copper, and increases the amount of granular copper migrating to the base metal. In the weld section, the longer the stirring needle is, the smaller the downward migration distance of the upper metal is. In the friction plane of weld shaft shoulder, the longer the stirring needle, the longer the distance of metal moving along the radial direction. In the plane of Al-Cu interface, the longer the stirring needle is, the worse the metal fluidity is, and the smaller and more uneven the distance along the radial migration is.
【学位授予单位】:江苏科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TG453.9
【参考文献】
相关期刊论文 前10条
1 高恩志;尹治利;刘冰洋;;基于计算流体力学的搅拌摩擦焊数值模拟[J];沈阳航空航天大学学报;2016年06期
2 王卫兵;栾国红;张坤;赵华夏;;搅拌摩擦焊塑性金属流动基本模型[J];焊接学报;2016年12期
3 赵艺达;柯黎明;刘奋成;毛育青;;搅拌针锥度和螺纹头数对厚板铝合金FSW焊缝金属迁移的影响[J];焊接学报;2016年10期
4 王楠;高中华;王军;;1060铝合金搅拌摩擦焊焊缝金属流动机理[J];电焊机;2016年06期
5 郑森;程东海;陈益平;胡德安;;铝/铜电子束焊接头的显微组织与力学性能[J];中国有色金属学报;2016年05期
6 高福洋;郁炎;蒋鹏;刘志颖;晏阳阳;郭宇凡;;铝钢异种金属搅拌摩擦焊搭接接头组织与性能研究[J];兵器材料科学与工程;2016年02期
7 彭泽军;张德;彭昌永;;复杂薄壁T2纯铜管板件的焊接技术[J];焊接技术;2015年12期
8 吴宪吉;田娟娟;张科;操齐高;;Ti/Al异种金属焊接研究进展[J];焊接技术;2015年10期
9 陈高强;史清宇;;搅拌摩擦焊中材料流动行为数值模拟的研究进展[J];机械工程学报;2015年22期
10 陈玉华;谢吉林;戈军委;柯黎明;;工艺参数对Ti/Al异种金属搅拌摩擦焊接头抗拉强度的影响[J];热加工工艺;2015年03期
相关硕士学位论文 前9条
1 廖美玲;轴肩形貌对搅拌摩擦焊缝金属塑性流动及组织性能的影响[D];南昌航空大学;2015年
2 卢阿丽;基于标记插入技术的搅拌摩擦焊流场的三维不对称性研究[D];江苏科技大学;2014年
3 吴小伟;铝—铜异种金属材料搅拌摩擦焊搭接研究[D];南京航空航天大学;2013年
4 李夏威;铝—铜异种金属搅拌摩擦焊技术的研究[D];华南理工大学;2012年
5 王成国;铝/铜异种材料搅拌摩擦焊接头耐腐蚀性能研究[D];南京航空航天大学;2012年
6 吴鸿燕;材料性能对铝合金搅拌摩擦焊焊缝塑性金属流动行为的影响[D];南昌航空大学;2011年
7 王晓东;搅拌摩擦焊焊缝塑性金属在焊缝厚度方向的迁移行为研究[D];南昌航空大学;2009年
8 王鑫;7A52铝合金搅拌摩擦焊实验研究及流动仿真[D];清华大学;2009年
9 穆耀钊;异种金属搅拌摩擦焊接过程有限元分析[D];西北工业大学;2006年
,本文编号:2151224
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2151224.html