当前位置:主页 > 科技论文 > 铸造论文 >

基于Kalman Filter-GM理论的数控机床热误差建模研究

发布时间:2018-08-02 10:09
【摘要】:随着“中国制造2025”计划的提出,我国开始实施制造强国三步走战略。而数控机床作为工业母机,在制造业中占有重要的地位,因此提高数控机床精度是非常有意义的。提高数控机床精度方法之一就是对数控机床误差进行建模分析和补偿,这篇论文主要围绕着数控机床的误差测量和建模分析来写。在数控机床各种误差源中,热误差是数控机床等精密加工机械的最大误差源之一。根据国内外研究者的研究内容,本文搭建了数控机床主轴热误差研究平台,主要从热误差测量、温度敏感点选择、建模和模型对比验证分析四个方面展开叙述,具体如下:(1)首先搭建数控机床热误差测量平台,然后通过模糊聚类分析和灰色关联分析对数控机床热误差测温点进行优化选择,确保数据的有效性和准确性,为接下来的建模收集和分析数据。(2)基于卡尔曼滤波-灰色模型理论(Kalman Filter-GM)建模,能够有效地减少噪声对观测值的影响,这样就可以得到观测值比较好的估计,从而确保基于Kalman Filter-GM的数控机床热误差的有效建模;在建立模型过程中,相比传统的最小二乘法估计参数,这种方法更加稳健,因此这种模型相对于传统的建模来说较好;(3)文中的残差修正模型是通过模拟值与建模数据建立的,这种方法可以让预测效果更好;基于卡尔曼滤波方法通过迭代变形数据分别构建了几个灰色模型,然后通过数据融合的方法把这几个灰色模型的数据进行融合,最终得到了预测数据的最佳估计值。(4)基于Kalman Filter-GM所建立的数控机床热误差模型,与传统的建模方法最小二乘法和最小二乘法支持向量机的数控机床热误差建模方法进行数据对比分析,最终得出结论,此种建模方法更好。
[Abstract]:With the proposal of "made in China 2025", China began to implement the three-step strategy of manufacturing power. As an industrial master machine, numerical control machine occupies an important position in the manufacturing industry, so it is very meaningful to improve the precision of numerical control machine tool. One of the methods to improve the accuracy of NC machine tool is to analyze and compensate the error of NC machine tool. This paper is mainly written around the error measurement and modeling analysis of NC machine tool. Among all kinds of error sources, thermal error is one of the biggest error sources of CNC machine tools and other precision machining machines. According to the research content of researchers at home and abroad, this paper builds the research platform of the spindle thermal error of NC machine tool, mainly from four aspects: the measurement of thermal error, the selection of temperature sensitive points, the modeling and the analysis of model comparison and verification. The details are as follows: (1) first, the thermal error measurement platform of NC machine tools is built, and then the temperature measurement points of thermal error are optimized by fuzzy clustering analysis and grey correlation analysis to ensure the validity and accuracy of the data. Collecting and analyzing data for the following modeling. (2) based on Kalman filter-grey model theory (Kalman Filter-GM) modeling, it can effectively reduce the effect of noise on the observed value, so we can get a better estimate of the observed value. In order to ensure the effective modeling of numerical control machine tool thermal error based on Kalman Filter-GM, this method is more robust than the traditional least square method in the process of modeling. Therefore, this model is better than the traditional modeling. (3) the residual correction model in this paper is based on the simulation value and the modeling data, this method can make the prediction effect better; Based on Kalman filtering method, several grey models are constructed by iterative deformation data, and then the data of these grey models are fused by data fusion method. Finally, the best estimate of the predicted data is obtained. (4) the thermal error model of NC machine tool based on Kalman Filter-GM. Compared with the traditional modeling methods, the least square method and the least square support vector machine, the numerical control machine tool thermal error modeling method is compared and analyzed. Finally, it is concluded that this modeling method is better.
【学位授予单位】:兰州理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TG659

【相似文献】

相关期刊论文 前3条

1 陈罡;;数控机床在大学生实践教学中的应用及存在的问题[J];价值工程;2014年17期

2 田文杰;牛文铁;常文芬;张大卫;;数控机床几何精度溯源方法研究[J];机械工程学报;2014年07期

3 蒋丽;;零件的数控加工工艺分析[J];价值工程;2014年17期

相关硕士学位论文 前10条

1 李桥林;基于Kalman Filter-GM理论的数控机床热误差建模研究[D];兰州理工大学;2017年

2 郑博;一种数控机床状态监控系统的设计与实现[D];郑州大学;2017年

3 姚蕊;基于产品族DNA的数控机床造型分析与再设计[D];西安理工大学;2017年

4 张心羽;基于过程数据分析的数控机床状态预测及故障预警研究[D];电子科技大学;2017年

5 曾翠兰;基于多元相空间重构的数控机床运动精度预测[D];重庆理工大学;2017年

6 韩佳伟;基于CAN通信的DNC系统智能转换模块设计[D];兰州交通大学;2017年

7 丁敏;基于视觉感知场的数控机床人机界面优化设计研究[D];合肥工业大学;2017年

8 张尧;基于PMAC的数控机床误差实时补偿研究[D];兰州理工大学;2017年

9 谢春秋;基于OPC UA的数控机床远程监控系统研究[D];兰州理工大学;2017年

10 沈荣成;i-DNC设备联网监控系统的研究[D];江南大学;2017年



本文编号:2159094

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2159094.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户bfd0d***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com