铝制内燃机缸体内壁铁基涂层的制备及摩擦学特性的研究
[Abstract]:With the rapid development of the automobile industry, the problem of energy and environmental pollution becomes more and more serious. By reducing the weight of the car and improving the fuel economy, the energy consumption of the automobile can be reduced effectively, and the effect of protecting the environment is effective. Therefore, the automobile production enterprises and the research institutions of various countries are carrying on the related research. More than half of the fuel is consumed by car weight, and more research institutions point out that the car's self weight is reduced by 10% and fuel consumption can be reduced by more than 1/10. More than half of the vehicles are made of aluminum alloy materials to make engines. Although the engine made using aluminum alloy material makes the weight of the car lighten, it can not meet the technical requirements of the high wear resistance of the cylinder, usually using the embedded cast iron cylinder liner or the high silicon aluminum alloy as the cylinder material, but both are stored. On the inner wall of the aluminum alloy cylinder, the coating with the thickness of about 200-300 m is prepared on the inner wall of the aluminum alloy cylinder. The weight of the increase is almost negligible. The wire material used can be chosen flexibly. The spraying and machining can be carried out in turn on the inner wall of the cylinder body, the precision is also guaranteed and the cost is very low. In order to make the inner wall of the aluminum engine cylinder tight and uniform, the coating with high bonding strength and high wear resistance is designed and manufactured, first, a special thermal spraying gun which can be used to spray the body surface of the engine cylinder is designed and manufactured. The gun body can finish the function of rotating spraying, and can ensure the bonding and spraying quality of the spraying layer. 4Cr13,65Mn and 08Mn2Si iron base wire were sprayed to the basic surface. The microstructure and morphology of the coating were observed and analyzed by metallographic microscope and scanning electron microscope. The characteristics of the elements in the coating and the composition of the phase contained in the coating were obtained by means of energy spectrum (EDS) analysis and XRD Atlas. The DPT-5 coloring permeation agent and adsorption medium were used. Mass (imaging agent), observe the permeability of liquid in the pores of the coating, and then get the distribution and morphology of the pore structure in the coating. Using the ImageJ software to get the pore profile picture and calculate the porosity of each coating, then use different stress and wear resistance test in the dry and wet environment by using the high temperature friction and wear test machine of the end face of MMU-5G material. Compared with gray cast iron, the loss weight of the coating, the loss weight of the pin, the friction coefficient of the coating, the gold phase diagram of the coating mark, the analysis of the wear resistance of the coating, combined with the characteristics of the composition of the coating, the characteristics of the pore structure and the porosity, were analyzed. The hardness of the coating, the pore structure in the coating, the size of the porosity and the distribution of the pores were obtained by analysis. The experimental results show that the bonding strength of the coating is related to the porosity of the coating and the ratio of oxide to the coating. The bonding strength of the coating is proportional to the oxide content in the coating and the density of the coating. Under dry friction, the hardness of the coating is hard. The wear of the 65Mn coating with the largest degree is the smallest, and the 08Mn2Si coating with the smallest microhardness is the largest. The oxide content in the coating determines the friction of the coating. The oxide in the coating has obvious lubrication, which increases the wear resistance of the coating. The higher the content of the oxide in the coating, the coating surface is formed during the friction process. The more complete the lubricating film is, the smaller the friction coefficient of the coating is, the friction of the coating is determined by the porosity and the distribution of the pore structure under the oil immersion friction condition. The oil liquid is transported into the pores during the friction process with the surface connected pores, and the oil stored in the friction is continuously transported to the friction interface, thus the effect of friction reduction is obtained. It is concluded that the self-made inner hole spray gun can prepare the coating of the inner wall of the aluminum cylinder, and the pore structure of the particle stacking in the preparation of the coating can play a very good antifriction effect in the actual work of the cylinder body. Therefore, the wear resistance coating of the inner wall of the aluminum engine can be prepared by the arc thermal spraying technology, which can be replaced in the aluminum cylinder. Cast iron cylinder liner or high silicon aluminium alloy is used as cylinder block, which provides a theoretical reference for the fabrication of wear resistant coating on the inner wall of aluminium engine cylinder block.
【学位授予单位】:沈阳工业大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TG174.4
【相似文献】
相关期刊论文 前10条
1 杨文彬;张立同;成来飞;华云峰;张钧;;金属有机物化学气相沉积法制备铱涂层的形貌与结构分析[J];稀有金属材料与工程;2006年03期
2 勾昱君;刘中良;;优化抑霜涂层的实验研究[J];陶瓷研究与职业教育;2006年01期
3 朱佳;冀晓鹃;揭晓武;史明;;封严涂层材料及应用[J];材料开发与应用;2008年04期
4 斯蒂芬·H·加里法里尼;罗恩·巴纳斯;J·克里唐;龙克昌;;航天飞机用的高粘性涂层的研制[J];稀有金属合金加工;1981年04期
5 缪兴邦;水溶性织物涂层胶的合成[J];化学世界;1985年03期
6 陈斌,易茂中;封严涂层的抗冲蚀性与冲蚀速度的关系[J];中南工业大学学报;1998年04期
7 郑有新;浅谈涂层表面颗粒不良现象[J];材料保护;2001年04期
8 闫颖,石子源,刘国伟;锌铬膜涂层的制备研究[J];大连铁道学院学报;2002年04期
9 张琼,蔡传荣;钛阳极涂层溶蚀失效的研究[J];电子显微学报;2003年06期
10 刘夙伟;李曙;刘阳;;封严涂层材料及其可刮削性的评价[J];中国表面工程;2009年01期
相关会议论文 前10条
1 张琼;蔡传荣;;钛阳极涂层溶蚀失效的研究[A];第三届全国扫描电子显微学会议论文集[C];2003年
2 王颖;顾卡丽;李健;;智能变色涂层及其应用[A];第六届全国表面工程学术会议暨首届青年表面工程学术论坛论文集[C];2006年
3 单凯军;余文莉;徐四清;;家电环保涂层表面性能检测的研究[A];2007中国钢铁年会论文集[C];2007年
4 李金桂;;无机富锌涂层的诞生和应用[A];第二届全国重防腐蚀与高新涂料及涂装技术研讨会论文集[C];2004年
5 王允夫;陈小英;王红玲;;高温合金抗热震涂层研究[A];中国硅酸盐学会搪瓷分会2003年学术研讨会论文集[C];2003年
6 刘建华;李兰娟;李松梅;;铝合金早期腐蚀预警光基敏感涂层的研制[A];2004年材料科学与工程新进展[C];2004年
7 林达仁;;梅雨期涂层表面泛白现象及其防治[A];中国电子学会生产技术学会第三届化工学术年会论文汇编(下)[C];1991年
8 庞佑霞;刘厚才;郭源君;;有机复合弹性涂层材料的抗磨蚀实验研究[A];第七届全国摩擦学大会论文集(二)[C];2002年
9 付前刚;李贺军;黄剑锋;史小红;史波;李克智;;炭/炭复合材料磷酸盐涂层的抗氧化性能研究[A];第19届炭—石墨材料学术会论文集[C];2004年
10 王兴原;苗晓;胡志强;光红兵;顾祥宇;;改善无取向硅钢环保涂层表面特性的方法研究[A];高性能电工钢推广应用交流暨第五次全委工作(扩大)会专题报告及论文[C];2013年
相关重要报纸文章 前6条
1 赵志玲;带卷粉末涂层新技术[N];世界金属导报;2012年
2 赵艳涛 曹垒 陈刚 孙亚娜;沙钢无取向硅钢涂层调试改进工艺[N];世界金属导报;2014年
3 华凌;美开发出智能过滤涂层[N];科技日报;2012年
4 莫文铸;防止衣服变脏科学家研制超疏液材料[N];中国纺织报;2013年
5 ;建筑幕墙用铝塑复合板[N];中国建材报;2008年
6 王烁 王奇 陈运法;玻璃幕墙专用纳米自清洁涂层的研究[N];中国建材报;2006年
相关博士学位论文 前10条
1 林岳宾;多因素耦合作用下α-Al_2O_3阻氚涂层形成规律及机理研究[D];南京航空航天大学;2015年
2 李增荣;铝制内燃机缸体内壁铁基涂层的制备及摩擦学特性的研究[D];沈阳工业大学;2016年
3 黄海;多孔钛合金表面HA涂层改性及大动物体内骨修复研究[D];第四军医大学;2016年
4 张晶;纯钛表面载LAMA3涂层在种植体—牙龈生物学封闭形成中的作用[D];浙江大学;2016年
5 朱利安;耐高温铱/铼涂层制备技术与性能研究[D];国防科学技术大学;2014年
6 蒲泽林;电热爆炸喷涂法制备亚微米晶涂层的研究[D];华北电力大学(北京);2005年
7 檀琳;非共价键合聚合物抗污涂层的制备及应用研究[D];中国科学技术大学;2015年
8 黄群武;耐候性太阳选择性吸收涂层的研究[D];天津大学;2007年
9 刘红兵;等离子复合渗技术制备氧化物阻氚涂层及其性能研究[D];南京航空航天大学;2010年
10 陈春燕;新型固相微萃取涂层的制备及其在环境分析中的应用[D];湖南大学;2013年
相关硕士学位论文 前10条
1 段晋辉;WS_2-TiB_2固体润滑涂层的制备及性能研究[D];昆明理工大学;2015年
2 王昊;连续高频感应真空熔覆技术研究[D];青岛理工大学;2015年
3 赵亚穷;聚碳酸酯透明件/纳米TiO_2涂层的耐紫外老化及环境应力开裂行为研究[D];郑州大学;2015年
4 王有维;铝电解槽TiB_2阴极涂层的制备及其性能研究[D];昆明理工大学;2015年
5 辛欣;Ti(Cr)SiC(O)N涂层表面改性硬质合金及热处理对其机械性能的影响[D];西南交通大学;2015年
6 刘玉洁;铜介导的多酚涂层用于心血管材料表面改性的研究[D];西南交通大学;2015年
7 邢学刚;稀土对钛合金化不锈钢表面制备双层涂层电化学及力学性能的影响[D];太原理工大学;2016年
8 王然;涂层对定向高温合金力学性能的影响及其抗热腐蚀性能的研究[D];江西科技师范大学;2015年
9 许向敏;CrN基涂层的制备及其性能研究[D];江西科技师范大学;2015年
10 冯佳伟;海底管线涂层破损时阴极保护数学模型的建立及应用研究[D];中国海洋大学;2015年
,本文编号:2159263
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2159263.html