多轴数控机床准静态空间误差建模及误差辨识方法研究
[Abstract]:With the deepening development of the transformation and upgrading of China's manufacturing industry, the demand for precision machinery products in all walks of life is increasing. As the basic equipment of manufacturing industry, the machining accuracy of CNC machine tools has a direct impact on the quality of the workpiece. In order to solve the above problems, this paper deeply studies the quasi-static spatial error modeling and error detection and identification methods of multi-axis CNC machine tools, and combines them with other methods. The main research work and achievements of this paper are as follows: (1) A space error modeling method based on incremental matrix is proposed. The actual coordinate transformation between adjacent bodies of machine tools is discussed in incremental form, and the total space of machine tools is solved by superposing the errors caused by the position and pose between adjacent bodies. Based on the proposed modeling method, the error sensitivity analysis model of NC machine tools is established by using the differential method, which provides the theoretical basis for accuracy allocation and local error compensation of NC machine tools. The error sensitivity analysis of two kinds of CNC machine tools is carried out. (2) The error detection experiment of moving and rotating axes of multi-axis CNC machine tools is designed, and the error identification model is established. The displacement error and rotating angle error of rotating axes are measured and identified separately by using the Ball-Bar instrument, and the error of RTTTR five-axis linkage machine tool is identified. A and C axes are taken as the research object, and the displacement error is measured and identified by axial and radial measurement methods. According to the specific characteristics of A and C axes, two axes rotation error detection experiments are designed and the identification model of rotation error is established. Improvement measures are proposed and a new identification model of moving axis error is established. The moving axis error detection and identification of five-axis gantry machine QLM27100-5X is carried out. The spatial geometric error and thermal error distribution caused by three-axis movement are discussed. Sensitivity analysis of spatial geometric error is carried out to verify the feasibility of the proposed identification method. Feasibility. (3) The geometric error support vector machine (SVM) model and the displacement thermal error model based on thermal deformation correction coefficient are established for the feed shaft of multi-axis CNC machine tools. The problem of neglecting the inconsistency between axial and radial thermal deformation coefficients of the moving shaft and the incomplete understanding of the thermal error characteristics is studied. Based on the analysis of the thermal deformation mechanism of the moving shaft, and considering the correlation between the linear expansion coefficient and the volume expansion coefficient of the crystal material, the axial and radial thermal deformation formulas of the lead screw are modified theoretically, and the temperature field of the moving feed system is non-uniform. Based on the uniformity characteristics, the location thermal error and straightness thermal error models based on the thermal deformation correction coefficient are established, and the accuracy of the two models is validated by the moving feed system of the five-axis gantry machine QLM27100-5X. (4) A grouping method of temperature variables based on the optimal threshold is proposed, and the typical temperature variables obtained by grouping are taken as the modeling independent. A piecewise inverse regression model of spindle thermal error is established. Based on fuzzy clustering and correlation analysis, a grouping method of temperature variables based on optimal threshold is proposed to solve the problem that the grouping of temperature variables depends too much on experience in thermal error modeling. The modeling method solves the problem that the function form of the common regression model of thermal error is fixed and the precision is not high when making long-term prediction, and improves the generalization and extrapolation ability of the thermal error model. Regression modeling and analysis show that the accuracy of the model is good. (5) Taking QLM27100-5X and MCH63 as the experimental platform, using the temperature-error detection system and error compensation system developed by our research group, the temperature and thermal error data of the machine tool are measured in real time, and the single positioning geometric error of the moving shaft, the spatial thermal error of the moving shaft and the error of the moving shaft are measured. Three kinds of models of axial thermal error of spindle are simulated and verified by experiments.
【学位授予单位】:南京航空航天大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TG659
【相似文献】
相关期刊论文 前10条
1 张琨;姚晓栋;张毅;杨建国;;基于时序模型优化选择的热误差建模[J];组合机床与自动化加工技术;2011年10期
2 林洁琼;邱立伟;卢明明;;基于多体系统理论的精密加工中心综合误差建模[J];机床与液压;2011年21期
3 陈亚宁;丁文政;裴亮;;三轴再制造机床空间几何误差建模与辨识研究[J];机床与液压;2008年04期
4 徐芳;;基于多体系统理论的五轴联动机床误差建模[J];企业技术开发;2014年11期
5 张毅;杨建国;李自汉;;基于自然指数模型的机床定位误差建模与实时补偿[J];组合机床与自动化加工技术;2013年08期
6 张锋;鲍磊;孙瑞涛;王福闯;邵敏;;PSA贴敷设备的精度分析和几何误差建模[J];制造业自动化;2014年13期
7 杨洋;聂学俊;黄谨佳;沈晓红;王丽;;机床热误差建模研究现状分析[J];煤矿机械;2012年01期
8 朱秋菊;李郝林;;基于神经模糊控制的机床热误差建模方法[J];现代制造工程;2012年11期
9 项伟宏,郑力,刘大成,赵大泉;机床主轴热误差建模[J];制造技术与机床;2000年11期
10 陈剑雄;林述温;;基于微分变换的数控机床几何误差建模的研究[J];工具技术;2013年08期
相关会议论文 前1条
1 范晋伟;关佳亮;王文超;骆琪;刘又午;章青;;3-5轴数控机床通用空间几何误差建模及精密加工指令求解方法研究[A];面向21世纪的生产工程——2001年“面向21世纪的生产工程”学术会议暨企业生产工程与产品创新专题研讨会论文集[C];2001年
相关博士学位论文 前5条
1 吕程;基于结合面误差建模的装配精度预测与优化研究[D];湖南大学;2016年
2 章婷;多轴数控机床准静态空间误差建模及误差辨识方法研究[D];南京航空航天大学;2016年
3 李永祥;数控机床热误差建模新方法及其应用研究[D];上海交通大学;2007年
4 崔岗卫;重型数控落地铣镗床误差建模及补偿技术研究[D];哈尔滨工业大学;2012年
5 李岩;光电稳定跟踪装置误差建模与评价问题研究[D];国防科学技术大学;2008年
相关硕士学位论文 前10条
1 王建亮;机床几何误差建模及敏感性分析[D];太原理工大学;2016年
2 查小娜;数控机床导轨系统关键误差建模与实时补偿研究[D];安徽理工大学;2016年
3 孙宇鹏;A3并联动力头的误差建模与精度设计[D];天津大学;2014年
4 王家兴;基于3-(?)RS混联加工中心误差建模方法的研究[D];天津大学;2016年
5 李锋;大型双柱立车误差建模、测量及分析[D];上海交通大学;2011年
6 多丽娅;北斗卫星导航系统接收模块的误差建模及应用研究[D];内蒙古工业大学;2014年
7 杨枝;高档数控机床几何误差建模与参数溯源优化技术及其应用[D];浙江大学;2014年
8 孙慧洁;大型真空调试平台的设计及其误差建模分析[D];哈尔滨工业大学;2013年
9 邹君阳;数控机床整机热分析及动态热误差建模的研究[D];华东理工大学;2013年
10 白福友;基于贝叶斯网络的数控机床热误差建模研究[D];浙江大学;2008年
,本文编号:2179873
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2179873.html