汽车铝合金后背门外板成形工艺优化及回弹控制
[Abstract]:As environmental pollution intensifies, energy stress and vehicle configuration increase, vehicle lightweight has become a research hotspot. Light-weight aluminum alloy to replace steel in the body of large-area use, can greatly reduce the weight of cars. The forming performance of aluminum alloy sheet is worse than that of common steel plate, especially in the process of stamping forming of large automobile panels, it is more likely to appear quality defects such as rupture, wrinkle, springback and surface damage, etc. Therefore, the design of aluminum alloy sheet stamping process can not simply apply the experience and standard of common steel plate. At the same time, compared with the extensive application of aluminum alloy in the body of foreign countries, this aspect is in the research and try stage in our country, so it is necessary to deeply study the stamping forming process of aluminum alloy panel. In this paper, the aluminum alloy back door plate of a certain automobile is taken as the research object, the finite element numerical simulation and mathematical optimization are used to explore how to carry out the reasonable forming process design of the aluminum alloy plate efficiently and accurately. Forming quality optimization and influencing factors analysis, springback control. The research results and methods have a certain guiding significance for the study and development of other aluminum alloy forming process. The main research contents of this paper are as follows: (1) analyzing the structure and forming characteristics of the parts and arranging the reasonable stamping procedure according to the forming properties of the aluminum alloy sheet; Then with the help of UG modeling design and Autofrom finite element numerical simulation technology, the reasonable forming process die surface, including drawing direction, process supplement surface, compaction surface, is worked out. Three kinds of drawing bars are selected to simulate the forming process. The results show that the non-closed double reinforcement scheme can better control the uniform flow of sheet metal and the forming quality is better. The formability differences of three aluminum alloy materials AA6009-T4, AA6016-T4 and AA6111-T4 in forming process were compared. The results showed that the plastic deformation of 10% AA6016-T4 sheet was sufficient, but the formability of AA6111-T4 was relatively poor. However, the formability of AA6009-T4 plate should not be ruptured in the middle. (2) in view of the fracture and wrinkling defects in the forming process of the parts, four technological parameters, namely, the blank holder force, the friction coefficient, the die clearance and the corner radius of the die, are selected as the optimization variables. With the maximum thinning rate and the maximum thickening rate as the optimization targets, the nonlinear mapping relationship between the optimization variables and the target is established by using the Box-Beheken test and the second-order response surface method, and the law of the influence of single factor and multi-factor interaction on the optimization target is predicted. Then, the NSGA-II genetic optimization algorithm is used for multi-objective optimization, and the combination of process parameters to effectively control the rupture and wrinkle is found. (3) the elastic modulus of aluminum alloy is easy to rebound, and at the same time, The results of springback calculation after unloading and trimming show that the springback is large and the distribution is uneven. So the die surface compensation technology is used to compensate the die surface for four times, and the springback after trimming is controlled within the allowable range of tolerance 卤0.50mm.
【学位授予单位】:江苏大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U466;TG386
【参考文献】
相关期刊论文 前10条
1 杨超;朱涛;杨冰;阳光武;鲁连涛;肖守讷;;结构动力学中的广义多步显式积分算法[J];西南交通大学学报;2017年01期
2 熊保玉;;汽车顶盖拉延成形工艺模拟及质量控制[J];锻压技术;2016年05期
3 严勇;吴超;胡志力;黄松;华林;;汽车铝合金覆盖件成形数值模拟的各向异性屈服准则研究[J];塑性工程学报;2016年02期
4 余海燕;王友;;5052铝合金冲压成形过程中韧性断裂的仿真研究[J];中国有色金属学报;2015年11期
5 王鹏;仲积峰;丁见;;高速动车铝合金车体双层中空薄壁型材表面损伤挖补修复工艺[J];金属加工(热加工);2015年20期
6 何维均;张士宏;程明;黄光杰;栾佰峰;刘庆;;宏观弹塑性本构模型的研究进展[J];塑性工程学报;2015年03期
7 徐宏彬;丁淑蓉;;锆板轧制模拟的显式动力与隐式静力有限元法比较[J];复旦学报(自然科学版);2015年03期
8 王小川;孙琦;秦信武;;白车身新材料应用及制造工艺发展研究[J];汽车工艺与材料;2015年03期
9 李国和;戚厚军;蔡玉俊;;考虑硬度的材料动态塑性本构关系模型[J];塑性工程学报;2015年01期
10 曹睿;黄倩;朱海霞;陈剑虹;;汽车车身用铝合金冷金属过渡点塞焊工艺分析[J];焊接学报;2015年02期
相关会议论文 前1条
1 范家杰;;经肺热稀释法在婴幼儿先天性心脏病术后血流动力学监测中的临床应用[A];2014年浙江省医学会小儿外科学分会心胸外科学组学术年会论文汇编[C];2014年
相关博士学位论文 前5条
1 林晓娟;微厚度板料成形数值模拟建模及弯曲回弹的尺寸效应研究[D];山东大学;2014年
2 张庆芳;板料多点成形回弹补偿方法及其数值模拟与实验研究[D];吉林大学;2014年
3 张伟伟;大型正交异性结构动力学分析的空间—时域多尺度方法及应用研究[D];上海交通大学;2014年
4 洪东峰;基于响应面方法的聚丙烯流程模拟与优化[D];北京理工大学;2013年
5 陈志英;冲压成形中破裂和回弹的细观损伤力学分析[D];上海交通大学;2009年
相关硕士学位论文 前8条
1 展召彬;汽车覆盖件回弹计算及补偿方法的研究[D];湖南大学;2016年
2 雷娇娇;铝蒙皮件冲压成形数值模拟及回弹补偿的研究[D];吉林大学;2016年
3 张林波;皮卡B柱内板上段加强板的冲压工艺设计与回弹优化[D];江苏大学;2016年
4 陈伟超;基于DYNAFORM的车门防撞梁热冲压数值模拟[D];吉林大学;2014年
5 吴善冬;汽车前纵梁内板冲压成形仿真及回弹补偿研究[D];重庆大学;2013年
6 吴玉娟;基于Autoform的冷冲压成形模拟研究[D];吉林大学;2012年
7 黄森;动态优化问题的移动有限元算法研究[D];浙江大学;2012年
8 李凯;中厚板轿车摇臂件拉深成形数值模拟与分析[D];吉林大学;2004年
,本文编号:2180014
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2180014.html