当前位置:主页 > 科技论文 > 铸造论文 >

超轻泡沫金属的简易高效制备及其性能研究

发布时间:2018-08-13 11:50
【摘要】:超轻泡沫材料具有超低的密度、高比表面积、吸收冲击能等特点,在催化剂载体、能量吸收等领域有着广泛的应用前景。目前,成功制备的密度小于10mg/cm3的超轻泡沫材料非常少,主要由碳、硅等非金属轻元素构成。由于金属相对于碳等非金属比重大,要制备孔隙率大于99%或密度小于10 mg/cm3的超轻金属泡沫宏观体面临更大的挑战。传统的制备方法只能获得孔隙率为40%~97%的泡沫金属,而超轻非金属泡沫的制备方法对于金属泡沫并不适用。迄今为止,尚未找到工艺简单、成本低廉的制备超轻泡沫金属的通用方法。本文选取一种廉价的日用清洁海绵-三聚氰胺泡沫为模板,以传统的化学镀为基础,首次采用无钯活化工艺,成功制备了银、镍、钴、铜等多种超轻泡沫金属宏观体。孔隙率均在99.5%以上,最轻的泡沫镍密度仅7.4 mg/cm3,孔隙率高达99.9%。采用无活化一步法进行化学镀银,在泡沫模板三维尺度形成了连续的超薄银膜,研究了不同工艺条件下银膜的结构及其形成机理。结果表明:此工艺过程与银镜反应相同,工艺简单;银镀层均匀连续,最薄的银层厚度仅200 nm,和理论计算结果相符;镀层的形成机理表明,控制溶液的浓度和反应温度,可以改变化学镀银的形核和长大速度,从而形成不同结构的镀层;无活化一步法化学镀银的最佳工艺条件为:反应溶液为20 g/L AgNO3、100 ml/L氨水、100 g/L葡萄糖,反应温度为20℃。采用化学镀银三聚氰胺泡沫,加热去除模板后,成功制备了密度低至18.7mg/cm3的超轻泡沫银。孔隙率高达99.8%,是目前已知最轻的泡沫银宏观体。研究了不同工艺对泡沫银微观结构的影响,测试了不同结构泡沫银的压缩性能,利用扫描电子显微镜原位观测了随温度变化泡沫银的形成过程。结果表明:化学镀银泡沫经烧结处理即获得超轻泡沫银宏观体;泡沫银由不同壁厚的中空银管构成,泡沫银的结构和烧结温度有关,烧结温度从660℃升高到700℃时,组成泡沫银的空心管转变为实心结构,泡沫银密度增大;超轻泡沫银的压缩强度随孔隙率增大而降低,中空管构成的泡沫银具有更大的压缩强度;对泡沫银制备过程进行原位观察发现,银在较低的温度下会发生再结晶和长大,组成泡沫银的银丝径会发生结构变化并产生收缩,使泡沫银宏观体和去除模板前相比出现了体积收缩。以化学镀银泡沫为基体,实现了银层上无钯活化的自触发化学镀镍,获得Ni/Ag/Ni三明治结构复合镀层,形成的超薄连续镀镍层厚度仅50 nm。经烧结处理即获得超轻泡沫镍。研究了无钯化学镀镍的镀层结构及其形成机理,研究了泡沫镍的制备工艺、结构和压缩性能。结果表明:化学镀镍能够在无钯活化的银层上进行,机理研究表明超薄连续银层的良好导电性促进了三维化学镀镍层的产生;去除模板后产物为超轻镍银复合泡沫,其孔壁由Ni/Ag/Ni三明治结构金属层组成,机理分析表明化学镀镍的强驱动力和氢气的产生促进了三明治结构的形成;超轻泡沫镍密度低至7.4 mg/cm3,孔隙率高达99.9%;其压缩曲线具有超长的压缩平台区,平台应变可达到82%,并且应力在平台区内保持不变,从而使泡沫镍的能量吸收效率高达98%。采用化学镀银泡沫,同样采用无钯活化工艺进行化学镀钴、化学镀铜后制备了超轻泡沫钴、超轻泡沫铜。研究了制备工艺、结构和泡沫钴的压缩性能。结果表明:采用无钯活化法在高分子表面进行化学镀钴,形成了厚度为150 nm的超薄连续镀钴层,经过烧结即获得超轻泡沫钴。泡沫钴的孔壁由Co/Ag双层结构金属层组成,密度低至12.7 mg/cm3,孔隙率高达99.9%;其压缩曲线与超轻泡沫镍相似,压缩平台应力可以在应变87%内保持不变;银层上化学镀的机理表明,金属离子吸收还原剂脱氢产生的电子后析出,连续超薄银层能够促进电子传输,加速金属沉积于银层表面而形成连续的金属镀层。本研究制备的镀银泡沫对各种化学镀具有普适性,所采用的方法是一种简易高效的制备超轻泡沫金属的通用方法。
[Abstract]:Ultra-light foam materials have many advantages, such as ultra-low density, high specific surface area, absorption of impact energy, and so on. They are widely used in catalyst support, energy absorption and other fields. Ultra-light metal foams with porosity of more than 99% or density of less than 10 mg/cm3 face greater challenges. Conventional preparation methods can only obtain foam metals with porosity of 40%~97%, but the preparation methods of ultra-light non-metallic foams are not suitable for metal foams. So far, no simple process has been found, and the cost is low. In this paper, a cheap and clean foam-melamine foam for daily use is selected as a template. Based on the traditional electroless plating, a palladium-free activation process is used for the first time to prepare the macro-structure of ultra-light foam metal, such as silver, nickel, cobalt, copper and so on. The porosity of the foam metal is above 99.5%, and the lightest one is nickel foam. The density is only 7.4 mg/cm 3 and the porosity is as high as 99.9%. Electroless silver plating is carried out by one-step method without activation. Continuous ultrathin silver films are formed on the three-dimensional scale of foam templates. The structure and formation mechanism of silver films under different technological conditions are studied. The thickness of the silver layer is only 200 nm, which is in agreement with the theoretical calculation. The formation mechanism of the silver layer shows that the nucleation and growth rate of the electroless silver plating can be changed by controlling the concentration of the solution and the reaction temperature, thus forming different structures of the coating. Ultra-light silver foam with density as low as 18.7 mg/cm3 was successfully prepared by heating melamine foam with electroless silver plating and removing template. The porosity of silver foam was 99.8%. It is the lightest known macro-structure of silver foam. The formation process of silver foam with temperature was observed by scanning electron microscopy in situ. The results show that the ultralight silver foam can be obtained by sintering the electroless silver-plated foam. The silver foam consists of hollow silver tubes with different wall thicknesses. The structure of silver foam is related to the sintering temperature, and the sintering temperature rises from 660 to 70. When the temperature is 0, the hollow tube of silver foam changes into solid structure, and the density of silver foam increases; the compressive strength of ultralight silver foam decreases with the increase of porosity, and the silver foam formed by hollow tube has greater compressive strength; the in-situ observation of the preparation process of silver foam shows that silver recrystallization and growth occur at lower temperature, and the composition of silver foam increases. The diameter of silver wire in silver foam changes and shrinks, resulting in volume shrinkage of silver foam macrostructure compared with that before removing template. Self-triggering electroless nickel plating without palladium activation on silver layer is realized on the basis of electroless silver plating foam. The composite coating with Ni/Ag/Ni sandwich structure is obtained. The thickness of ultra-thin continuous nickel plating layer is only 50 nm. The structure and formation mechanism of electroless nickel plating without palladium were studied. The preparation process, structure and compressive properties of electroless nickel foam were studied. The results showed that electroless nickel plating could be carried out on a palladium-free activated silver layer. The mechanism study showed that good conductivity of ultrathin continuous silver layer promoted three-dimensional chemistry. The formation of the nickel-plated layer, the product after removing the template was ultralight nickel-silver composite foam, and the pore wall was composed of Ni/Ag/Ni sandwich structure metal layer. The mechanism analysis showed that the strong driving force of electroless nickel plating and the formation of hydrogen promoted the formation of the sandwich structure; the density of ultralight nickel foam was as low as 7.4 mg/cm 3, and the porosity was as high as 99.9%; the compression curve of ultralight nickel foam had a super The plateau strain can reach 82% in the long compression plateau area, and the stress remains unchanged in the plateau area, so that the energy absorption efficiency of nickel foam can reach 98%. The ultralight foam cobalt and ultralight foam copper were prepared by electroless silver plating foam and palladium-free activation process. The results show that the ultra-thin cobalt foam layer with 150 nm thickness is formed by electroless plating of cobalt on the polymer surface by palladium-free activation method, and the ultra-light cobalt foam is obtained by sintering. The mechanism of electroless plating on silver layer shows that the electrons produced by dehydrogenation of metal ions absorb and dehydrogenate, and the continuous ultra-thin silver layer can promote electron transport and accelerate the deposition of metal on the surface of silver layer to form a continuous metal coating. Foam is universal to all kinds of electroless plating. The method adopted is a simple and efficient general method for preparing ultra-light metal foam.
【学位授予单位】:天津大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TG178

【相似文献】

中国期刊全文数据库 前10条

1 耀星;国外泡沫金属的制造及应用[J];粉末冶金工业;2000年02期

2 谷岳;泡沫金属[J];汽车工艺与材料;2000年09期

3 耀星;粉末冶金泡沫金属应用前景看好[J];粉末冶金工业;2001年01期

4 王录才,于利民,王芳,李秀山;多孔泡沫金属的研究及其前景展望[J];太原重型机械学院学报;2002年01期

5 陈学广,赵维民,马彦东,胡爱文;泡沫金属的发展现状、研究与应用[J];粉末冶金技术;2002年06期

6 于英华,梁冰,李智超;多孔泡沫金属研究现状及分析[J];青岛建筑工程学院学报;2003年01期

7 左孝青,孙加林;泡沫金属制备技术研究进展[J];材料科学与工程学报;2004年03期

8 刘亚俊,赵生权,刘崴,陈平,汤勇;泡沫金属制备方法及其研究概况[J];现代制造工程;2004年09期

9 陈文革,张强;泡沫金属的特点、应用、制备与发展[J];粉末冶金工业;2005年02期

10 史承明;王晓明;张陵;;泡沫金属及其在建筑工程中的应用[J];陕西理工学院学报(自然科学版);2006年02期

中国重要会议论文全文数据库 前10条

1 杨思一;吕广庶;;具有规则孔型的泡沫金属结构设计与制造方法研究[A];2004年中国材料研讨会论文摘要集[C];2004年

2 柳畅;陈常青;沈亚鹏;;小泡沫金属压痕试验的数值模拟及其反演[A];中国力学学会学术大会'2005论文摘要集(下)[C];2005年

3 陈振乾;施明恒;;泡沫金属内流体冻结相变的传热过程[A];第四届全国制冷空调新技术研讨会论文集[C];2006年

4 宋绍峰;姜培学;;泡沫金属与针翅结构换热器的实验研究[A];2007年中国机械工程学会年会论文集[C];2007年

5 郑志军;虞吉林;;泡沫金属的动态压溃:冲击压缩、多尺度模拟和率敏感性[A];中国力学大会——2013论文摘要集[C];2013年

6 蒋家桥;黄西成;胡时胜;;泡沫金属缓冲器的设计新方法及应用[A];中国工程物理研究院科技年报(2003)[C];2003年

7 李剑荣;寇东鹏;虞吉林;;具有双重尺寸孔结构的开孔泡沫金属的优化设计[A];中国力学学会学术大会'2005论文摘要集(下)[C];2005年

8 穆林;韩瑶;张建;赵桂平;卢天健;;基于分形理论的泡沫金属材料力学细观结构分析[A];中国力学大会——2013论文摘要集[C];2013年

9 高建成;刘赵淼;;泡沫金属的力学性能研究进展[A];北京力学会第13届学术年会论文集[C];2007年

10 杨秀;陈振乾;施明恒;;泡沫金属内流体冻结相变传热过程的研究[A];中国制冷学会2007学术年会论文集[C];2007年

中国重要报纸全文数据库 前4条

1 张译中;金属泡沫材料研究进展[N];世界金属导报;2002年

2 中航工业制造所 侯红亮;新型轻量化功能与结构材料——泡沫金属及其三明治结构[N];中国航空报;2014年

3 石发清;制备泡末铝工艺的研究[N];中国有色金属报;2005年

4 李有观;制造泡沫铝合金材料的新技术[N];中国有色金属报;2005年

中国博士学位论文全文数据库 前10条

1 张晓阳;多轴条件下基于细观结构模型的泡沫金属屈服与破坏行为研究[D];华南理工大学;2016年

2 施娟;泡沫金属强化沸腾传热过程的研究[D];东南大学;2015年

3 彭文平;耦合化学反应的多孔介质内热质传递机理研究[D];中国科学院工程热物理研究所;2017年

4 姬科举;开孔泡沫金属的功能化应用基础研究[D];南京航空航天大学;2016年

5 姜斌;超轻泡沫金属的简易高效制备及其性能研究[D];天津大学;2016年

6 王长峰;泡沫金属的动态压溃模型和率敏感性分析[D];中国科学技术大学;2013年

7 李科;泡沫金属发泡过程的泡沫演化动力学研究[D];大连理工大学;2009年

8 韩春光;拉伸条件下泡沫金属的细观统计分析模型及统计特性研究[D];华南理工大学;2011年

9 罗彦茹;泡沫SiC_p/ZL104复合材料的制备及性能研究[D];吉林大学;2007年

10 周志伟;泡沫铝合金与芳纶纸蜂窝的屈服行为研究[D];太原理工大学;2013年

中国硕士学位论文全文数据库 前10条

1 黄媛媛;开孔泡沫金属微结构强化传热性能的数值模拟研究[D];华东理工大学;2015年

2 杨皓;纯铝泡沫的真空发泡制备与力学性能研究[D];昆明理工大学;2015年

3 高晓莉;泡沫金属磁流变液阻尼器的优化设计及性能研究[D];上海应用技术学院;2015年

4 张学丽;吸声降噪密胺泡沫的制备与表征[D];北京化工大学;2015年

5 王江龙;冲击载荷作用下梯度泡沫的压缩特性分析[D];太原理工大学;2016年

6 封伟民;泡沫镁材料的制备与性能研究[D];哈尔滨工业大学;2016年

7 牛玲;紧凑式换热器优化设计及其相变传热研究[D];郑州大学;2016年

8 郭坤山;泡沫钢的制备与组织性能研究[D];昆明理工大学;2016年

9 李朝剑;空心微球结构泡沫金的光电特性研究[D];云南大学;2016年

10 孙猛;泡沫金属磁流变液阻尼器的半主动控制特性研究[D];上海应用技术大学;2016年



本文编号:2180900

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2180900.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户23bec***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com