金属等离激元微结构的光俘获操纵和表面增强拉曼散射研究
[Abstract]:The abundant optical properties caused by the excitation, coupling and propagation of sub-wavelength metal Micro-Nanostructures and their surface plasmons are one of the hotspots in the fields of energy science, information science, material science and their cross-cutting. Designs of novel functional metal plasmon microstructures for different applications have emerged in an endless stream, providing a large number of effective solutions for the manipulation of photons and the regulation of light-matter interactions, and exhibiting high-efficiency photoelectric conversion, enhancement of optical nonlinear effects, and nano-integrated optical chips. Focusing on the scientific problem of how to modulate the excitation and propagation of electromagnetic waves in media by using plasmon microstructures, this paper studies the mechanism and structure design scheme of high-efficiency broadband photon capture using artificial metal microstructures, and explores the optical absorption and local field enhancement synergy of plasmon excitations. The first part of this paper is the theoretical design and experimental fabrication of a two-dimensional disordered colloidal crystal-based metal micro-nano structure, so as to achieve wavelength-tunable ultra-wideband, incident angle and polarization-insensitive plasmon resonance perfect absorber. Aiming at the problems of quantum well photodetectors in infrared optical coupling efficiency, a kind of optical coupler for multilayer quantum wells operating in very long wave infrared (14-16 micron) band was designed by using the coupling effect of hybrid surface plasmon resonance mode and microcavity mode. The optical coupling efficiency was greatly improved. In the third part of this paper, we combine nanoimprinting technology with improved nano-lithography technology and metal nanoparticle deposition technology to fabricate a series of metal nanoparticle arrays with large area and high homogeneity, and explore their regulation on surface-enhanced Raman scattering (SERS) effect. Based on the self-organization technique of large-plane homogeneous disordered two-dimensional colloidal crystals, a broadband plasmon-photon perfect absorption structure is designed and fabricated. The structure is obtained by disorderly arrangement of two-dimensional colloidal crystals on a flat gold film and deposition of different thickness of gold film. The total absorption properties of the structure are derived from plasma exciton coupling. The excitation of the combined Fabry-Perot resonance mode and the magnetic plasmon cavity mode can produce a wider band of perfect absorption than the disordered plasmon-photon absorber in the ordered structure system because the Bloch eigenmode is suppressed by the disordered lattice. The hybrid arrangement of colloidal microspheres utilizes the influence of geometrical size on the regulation of optical absorption to achieve the perfect absorption of near-infrared ultra-wideband effectively. At the same time, due to the symmetry of a single resonant unit and the disordered arrangement of the system, the near-infrared full absorber exhibits the characteristics of polarization-independent and wide-angle response. The designed system is based on mature metal film deposition and colloidal crystal self-assembly method. It has the advantages of low preparation process requirements, cost control and high repeatability. By changing the size of microspheres and the thickness of metal film, the ultra-wideband total absorber can be operated in the full band from light to infrared. 2. Quantum well infrared detectors (QWIPs) have significant advantages over conventional HgCdTe infrared detectors in fabricating large-area, low-power, low-cost, high-uniformity and high-sensitivity focal plane array (FPA) imaging systems. However, for n-type QWIPs, due to the selection of inter-band transitions, Quantum well layers can not be coupled to vertically incident electromagnetic waves. In this paper, an efficient metal optical coupling structure for multilayer quantum well photodetectors in very long wave infrared band is proposed. The coupling structure supports two resonant modes, hybrid surface plasmon resonance and microcavity resonance, by adjusting the two modes. Coupling effectively enhances the photon density of states in the active region of quantum wells, especially the Ez component of the electric field, and improves the optical coupling efficiency of QWIPs. The coupling efficiency factor (_) of the Ez distribution in the layers reaches 6. In addition, the metal microstructures we designed exhibit the applicability of large incident angles (up to 40 degrees) and the dependence on the incident polarization. Based on the numerical simulation, we propose a combination of molecular beam epitaxy and standard light. A series of large-area, highly homogeneous metal nanoparticle arrays have been fabricated as SERS substrates based on nanoimprinting and improved nano-ball lithography. Firstly, we introduce the fabrication of SERS substrates with high-performance infrared photodetectors. A SERS substrate consisting of gold/PC nano-column arrays based on alumina template nanoimprinting and metal nano-particle deposition techniques was prepared. The optical properties of gold/PC nano-column arrays were adjusted by adjusting the structural parameters and the thickness of gold plating on AAO template. This kind of gold/PC nano-column array is actually situated on the elastic PC film, so the external force distortion and stretching will provide another degree of freedom for SERS. Secondly, we introduce an improved nano-ball lithography technique. A quasi-three-dimensional metal mesh SERS substrate with a large number of sub-nanometer ultra-small gaps has been fabricated. The substrate has a Raman enhancement factor of 1.5 *108 and can detect R6G molecules in aqueous solutions with concentrations as low as 1 *10-9M. The relative standard deviation (RSD) of the SERS strength distribution with spatial position is only 10.5%, showing excellent SERS performance. In addition, we have fabricated a large area of silver particle arrays on silicon wafers based on phase separation lithography. The arrays exhibit high homogeneity and Raman enhancement of 1.64 *108. In addition, compared with traditional methods, the method of preparing SERS substrate by phase separation lithography is simple, low-cost and has obvious yield. Industry application prospects.
【学位授予单位】:南京大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TB383.1;TG111
【相似文献】
相关会议论文 前3条
1 肖宜明;张丫丫;张超;徐文;;中空金属纳米球等离激元以及表面等离激元模式研究[A];中国真空学会2012学术年会论文摘要集[C];2012年
2 刘海;孙秀冬;;金属纳米线对中磁等离激元与电介质多层膜表面波耦合作用的研究[A];中国光学学会2011年学术大会摘要集[C];2011年
3 张超;张瑞;江嵩;张力;高洪营;张晓磊;陈留国;廖源;徐文;董振超;;石墨表面卟啉分子的电致发光特性研究[A];中国真空学会2012学术年会论文摘要集[C];2012年
相关重要报纸文章 前2条
1 张华念;美国科学家发现新型“隐身术”[N];大众科技报;2005年
2 记者 吴长锋;中科大发现源于纳米天线效应的新电光现象[N];科技日报;2010年
相关博士学位论文 前10条
1 高峰;金属微纳结构中光与等离激元的耦合效应及其调控[D];南京大学;2011年
2 薛红杰;纳米薄膜中的电磁波与原子团簇中的等离激元研究[D];湖南大学;2016年
3 胡昌宝;金纳米结构等离激元透镜的聚焦特性的研究[D];南京大学;2017年
4 严蕾;等离激元诱导光催化反应的微观机制[D];中国科学院大学(中国科学院物理研究所);2017年
5 吴仍来;纳米电子体系中的等离激元[D];湖南大学;2015年
6 张杨;分子发光与纳腔等离激元共振之间的相互调制研究[D];中国科学技术大学;2010年
7 刘正奇;新型金属/介电复合等离激元微结构的光透射与光全吸收效应研究[D];南京大学;2013年
8 秦将;超快等离激元动力学及其控制[D];长春理工大学;2017年
9 吴腾飞;非对称等离激元纳米结构共振模型及传感特性研究[D];天津大学;2013年
10 耿锋;扫描隧道显微镜诱导分子发光中的脱耦合调控研究[D];中国科学技术大学;2012年
相关硕士学位论文 前9条
1 陆海洋;基于自组织等离激元微结构的增强透射与光吸收效应研究[D];南京大学;2014年
2 孙任;基于局域等离激元的金属光致荧光的增强与调控研究[D];南京大学;2016年
3 谭颖玲;三维金属颗粒等离激元黑体材料[D];南京大学;2016年
4 冯鹏;等离激元纳米结构/材料设计和检测[D];南京大学;2016年
5 鱼艳琴;二维原子点阵的等离激元的性质[D];湖南大学;2016年
6 马平平;非对称纳米结构中的等离激元振荡和诱导透明现象[D];陕西师范大学;2016年
7 武霁;有限长度的准一维体系的等离激元[D];湖南大学;2013年
8 辛旺;在紧束缚纳米结构中的等离激元[D];湖南大学;2013年
9 朱立昊;等离激元结构在薄膜硅太阳能电池中的应用[D];南京大学;2013年
,本文编号:2189575
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2189575.html