当前位置:主页 > 科技论文 > 铸造论文 >

面齿轮磨削力建模分析及工艺参数优化研究

发布时间:2018-08-18 13:24
【摘要】:面齿轮传动是传递相交轴或交错轴运动的重要机械传动系统。由于面齿轮齿面形状复杂和加工过程难度大,使获取高精度齿面成为一个关键问题。本文旨在提高面齿轮磨削质量和生产加工效率,对碟形砂轮磨削正交面齿轮的磨削力及工艺参数优化方面进行研究,主要包括以下内容:基于碟形砂轮磨削正交面齿轮。国内对碟形砂轮磨削面齿轮的技术研究是近些年开始的,本文就碟形砂轮磨削正交面齿轮关键技术原理等进行阐述,介绍了面齿轮齿面成形加工运动及包络方式。面齿轮磨削力形成机理。根据面齿轮点接触式磨削原理与磨削理论,介绍了磨削力的形成原因与过程,阐述了格里森瞬时椭圆接触理论与曲面有关知识;重点对磨削力的几何影响因素(磨削接触弧长和接触宽度等)的数学公式进行了分析及推导。面齿轮磨削力的建模及工艺影响分析。理论上重点分析了磨削用量对磨削力的影响趋势;此外,介绍了磨削力对工件的影响以及磨削力的测量方法;从单颗磨粒在磨削过程中的受力分析入手,结合面齿轮齿面曲率大小,将面齿轮复杂曲面转换为倾斜面,综合倾斜面磨削理论,建立了面齿轮磨削力的数学模型;通过对磨削力的实例仿真分析,得到了磨削用量对磨削力不同的影响规律;最后,利用实验验证所建磨削力的数学模型与仿真结果,通过对比仿真结果与实测结果发现两者数据基本相符。面齿轮磨削力的建模及工艺影响分析可为后续工艺参数的优化提供一定理论依据。面齿轮磨削加工工艺参数的优化研究。着眼于生产效率与表面质量的提高,对面齿轮磨削加工工艺参数进行了分析;在此基础上,以生产效率和表面粗糙度为优化目标函数,考虑表面粗糙度、磨削功率、磨削烧伤为约束条件,并且综合考虑磨削用量的边界范围,建立了多目标非线性的优化数学模型;针对所建的优化模型,介绍了遗传算法与内点法有关理论,利用遗传算法与内点法相结合的方法对所建的优化数学模型进行求解,最终结合面齿轮实际磨削加工情况以及磨削力因素,得到了三组优化工艺参数方案;为了验证优化后的工艺参数,设计并实施了有关实验,通过对比优化仿真结果,两者相对误差在可信范围内。这为实际加工面齿轮的生产厂家提供了参考。
[Abstract]:Surface gear transmission is an important mechanical transmission system to transfer the movement of intersecting shaft or staggered shaft. Due to the complexity of tooth surface shape and the difficulty of machining, it is a key problem to obtain high precision tooth surface. The aim of this paper is to improve the grinding quality and production efficiency of surface gear. The grinding force and technological parameters optimization of disc wheel grinding orthogonal face gear are studied. The main contents are as follows: grinding orthogonal surface gear based on disc wheel. In recent years, the research on the technology of grinding face gear with disc grinding wheel has been started in China. This paper expounds the key technology principle of grinding orthogonal face gear with disc grinding wheel, and introduces the machining movement and enveloping method of surface gear tooth surface forming. Surface gear grinding force formation mechanism. According to the contact grinding principle and grinding theory of surface gear, the forming reason and process of grinding force are introduced, and the knowledge of Gleason's instantaneous elliptical contact theory and surface is expounded. The mathematical formulas of the geometric factors affecting grinding force (grinding contact arc length and contact width etc.) are analyzed and deduced. Surface gear grinding force modeling and process impact analysis. In addition, the influence of grinding force on workpiece and the measuring method of grinding force are introduced. Combined with the curvature of surface gear tooth surface, the complex surface of surface gear is converted into inclined surface, and the mathematical model of grinding force of surface gear is established by synthesizing the theory of inclined surface grinding. Finally, the mathematical model and simulation results of the grinding force are verified by experiments, and the comparison between the simulation results and the measured results shows that the two data are basically consistent. Surface gear grinding force modeling and process impact analysis can provide a theoretical basis for the optimization of subsequent process parameters. Research on Optimization of Grinding process parameters for Surface Gear. Aiming at the improvement of production efficiency and surface quality, the grinding process parameters of face gear are analyzed, and the production efficiency and surface roughness are taken as the optimization objective function, and the surface roughness and grinding power are considered. The multi-objective nonlinear optimization mathematical model is established by considering the boundary range of grinding amount and the genetic algorithm and the interior point method are introduced for the optimization model. The optimization mathematical model is solved by the combination of genetic algorithm and interior point method. Finally, three groups of optimized process parameter schemes are obtained by combining the actual grinding conditions and grinding force factors of surface gear. In order to verify the optimized process parameters, the experiments were designed and implemented, and the relative error was found to be within the credible range by comparing the simulation results. This has provided the reference for the actual processing face gear manufacturer.
【学位授予单位】:湖南工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TG616

【参考文献】

相关期刊论文 前10条

1 王学智;孙雪;石莹;翟彦春;于天彪;王宛山;;超高速磨削砂轮基体结构的多目标遗传优化[J];金刚石与磨料磨具工程;2016年04期

2 黄智;陈士行;万从保;王立平;;三维动态磨削力测量平台结构设计[J];东北大学学报(自然科学版);2016年09期

3 唐进元;周伟华;黄于林;;轴向超声振动辅助磨削的磨削力建模[J];机械工程学报;2016年15期

4 何玉辉;周群;郎献军;;轴向超声振动辅助磨削的磨削力研究[J];振动与冲击;2016年04期

5 明兴祖;高钦;肖磊;龙誉;刘金华;;面齿轮磨削表面粗糙度建模与实验分析[J];机械传动;2016年01期

6 陈秀梅;韩秋实;李启光;彭宝营;;凸轮磨削力变化规律研究[J];机械设计与制造;2015年12期

7 王艳;徐九华;杨路;;高速精密磨削9CrWMn冷作模具钢的磨削力和比磨削能[J];光学精密工程;2015年07期

8 明兴祖;赵磊;王伟;李曼德;;面齿轮碟形砂轮磨削温度场有限元分析[J];机械传动;2015年06期

9 王会良;熊宇权;何光强;;成形法磨削斜齿轮的磨削力模型[J];机械传动;2015年04期

10 丁国龙;张颂;赵大兴;赵迪;赵东雄;;齿轮成形磨削砂轮廓形优化研究[J];中国机械工程;2015年06期

相关博士学位论文 前4条

1 田霖;基于磨粒有序排布砂轮的高速磨削基础研究[D];南京航空航天大学;2013年

2 李大庆;直齿面齿轮啮合性能预控及碟形砂轮磨齿关键技术研究[D];江苏大学;2013年

3 李冬冬;高硬度球面磨削形状精度及表面质量研究[D];上海交通大学;2012年

4 明兴祖;螺旋锥齿轮磨削界面力热耦合与表面性能生成机理研究[D];中南大学;2010年

相关硕士学位论文 前10条

1 王伟;大型螺纹旋风硬铣削数值模拟及工艺参数优化[D];浙江大学;2016年

2 朱成就;考虑质量和能耗的陶瓷抛光工艺参数仿真与优化[D];广东工业大学;2015年

3 亓剑;磨削表面粗糙度预测及实验研究[D];天津职业技术师范大学;2015年

4 刘民慧;碳化硅陶瓷精密磨削亚表面损伤及预测研究[D];哈尔滨工业大学;2014年

5 梁超;大尺寸蓝宝石整流罩加工工艺优化及实验研究[D];哈尔滨理工大学;2013年

6 蓝善超;基于单颗粒磨削的电镀CBN砂轮磨削窄深槽的特性分析[D];太原理工大学;2012年

7 胡垒;曲面圆弧包络磨削力特性及曲面研抛加工研究[D];广东工业大学;2011年

8 丁军鹏;齿轮成形磨削工艺参数优化及实验研究[D];河南科技大学;2011年

9 高金忠;面齿轮滚磨刀具设计与修整方法研究[D];南京航空航天大学;2011年

10 张恒先;基于Web的超高速磨床加工仿真研究[D];东北大学;2010年



本文编号:2189601

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2189601.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户25166***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com