薄壁曲面零件数字化制造优化技术研究
[Abstract]:With the wide application of thin-walled curved surface parts, the design and machining of thin-walled curved surface parts has become a hot spot in the field of digital design and manufacturing (CAD/CAM) development and application. The shape of thin-walled curved parts is long, the rigidity difference is easy to deform, the deformation compensation is difficult, and the clamping is very difficult. Numerical control machining of thin-walled curved parts is the research focus in the field of digital manufacturing. In this paper, the NC programming technology, NC machining technology and surface fixture for thin-walled curved surface parts are deeply studied. Aiming at the bottleneck problems such as the discontinuity of traditional NC cutter path, or the continuous path of cutter path but too much angle transfer, which seriously restricts the cutting performance of high speed machining, this paper presents a new method for the generation of compound helical cutter track for high speed machining. Aiming at the cutting stability of high speed machining, the complex free-form surface is subdivided into "flat surface", "top plane-steep surface", "top flat surface-steep surface" and "composite steep surface". According to their different shape characteristics and technological characteristics, the compound helical cutter rails with different structures are developed, which can meet the harsh requirements of high-speed machining of various complex free-form surfaces, and effectively solve the cutting chatter and vibration in high-speed machining. The machining efficiency and precision of thin-walled curved parts are improved obviously. Aiming at the common distortion phenomenon in the process of surface reverse construction, the traditional deformation compensation technology, reverse engineering technology and numerical control 5-axis CAM technology are effectively combined with the construction of deformation compensation surface as the core, and the new results of the traditional deformation compensation technology, reverse engineering technology and numerical control 5-axis CAM technology are effectively combined. The "spline curve fitting optimization method", "surface reconstruction technology optimization method" and "CAM programming method based on surface 3D normal compensation" for thin-walled surface deformation compensation are proposed, which realize the integration of surface error compensation and NC programming. The accuracy of surface deformation compensation and the efficiency of CAM programming are greatly improved. In view of the lack of efficient adaptive fixture for thin-walled curved surface parts in tooling design, The adaptive multi-point curved surface fixture for ring thin-wall blank and the multi-point surface adaptive vacuum fixture for thin-walled curved box parts are developed. Multi-point curved surface adaptive fixture combines the advantages of mechanical structure and hydraulic structure. Compared with the traditional fixture, the number of contact points is multiplied, the multi-point floating function is realized in the structure, the shape adaptability is strong and the clamping efficiency is high. Can meet the automatic production line for freeform surface parts fast clamping requirements. The results of finite element analysis and practical application show that the adaptive fixture can meet the requirements of the automatic production line for fast clamping of free-form surfaces. The research results of this paper provide new methods and tools for the application of high speed cutting technology of thin-walled surface parts, three-dimensional deformation compensation technology of thin-walled surface and adaptive fixture of multi-point curved surface.
【学位授予单位】:江苏大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TG659
【相似文献】
相关期刊论文 前10条
1 李新强,王建平,徐瑞霞;车内复杂曲面工装[J];机械工人.冷加工;2005年03期
2 陈欣;金俊杰;王可;;一种复杂曲面测量新技术的理论研究[J];组合机床与自动化加工技术;2007年02期
3 何灵;空间立体曲面零件的编程和加工[J];机床;1992年03期
4 谢展;钱志良;张新建;;规则曲面侧铣过程中的刀位计算[J];机械工程师;2007年12期
5 周纪军;石涛;;曲面零部件加工技术问答[J];家具;2003年06期
6 牟鲁西;尹周平;;基于误差分析的曲面组合测量方法研究[J];现代制造工程;2012年10期
7 谢叻,周儒荣,阮雪榆;自由曲面零件余量加工算法[J];机械工程学报;2003年05期
8 佛新岗;;MasterCAM曲面精加工方案选择研究[J];煤矿机械;2012年01期
9 黄大贵,武好明,谢伟;直线元成型复杂曲面的五坐标CNC加工技术[J];电子科技大学学报;1996年03期
10 谢秋馨;;在Master CAM中进行曲面自动加工教学的探索[J];湖南农机;2013年01期
相关会议论文 前2条
1 童伟;刘建养;;高精度参数化曲面的造型和加工技术探讨[A];中国电子学会生产技术学分会机械加工专业委员会第八届学术年会论文集[C];2001年
2 申晓龙;张来希;;数控线切割加工模具曲面装置的改造研究[A];第14届全国特种加工学术会议论文集[C];2011年
相关博士学位论文 前10条
1 吴海东;面向航空发动机叶片顶端修复的曲面再生算法与误差分析[D];广东工业大学;2015年
2 王晓飞;复杂曲面测量规划及定位技术研究[D];天津大学;2014年
3 赵东宏;薄壁曲面零件数字化制造优化技术研究[D];江苏大学;2016年
4 王立成;复杂曲面原位检测方法与实验研究[D];华中科技大学;2012年
5 牟鲁西;复杂曲面零件在机测量关键技术研究与应用[D];华中科技大学;2012年
6 钟山;复杂曲面正向/逆向快速设计关键技术与增材制造数据处理方法研究[D];华南理工大学;2013年
7 孔令叶;轴对称回转曲面精密磨削加工技术研究[D];广东工业大学;2011年
8 杨建中;复杂多曲面数控加工刀具轨迹生成方法研究[D];华中科技大学;2007年
9 李国;基于刀具摆动进给的非球曲面超精密车削方法及系统研究[D];哈尔滨工业大学;2010年
10 郑刚;复杂曲面非球头刀宽行铣削加工的几何学原理与方法[D];上海交通大学;2012年
相关硕士学位论文 前10条
1 任衍涛;基于慢刀伺服的曲面准柔性抛光技术研究[D];太原科技大学;2015年
2 刘鸣华;基于结构仿生的派生曲面研究[D];燕山大学;2011年
3 胡滨;异型功能曲面的数字化闭环创成技术的研究[D];山东大学;2007年
4 江欢;曲面展开方法及其计算机实现的研究[D];西安理工大学;2009年
5 孟凡秋;基于Mastercam的凸形曲面数控加工技术研究[D];山东大学;2008年
6 李坚;非回转对称光学曲面车削加工误差评定的研究[D];吉林大学;2011年
7 张建平;整体叶轮叶片曲面侧铣加工的刀位规划研究[D];大连交通大学;2010年
8 刘飞鹏;基于主曲率匹配曲面分片的五轴加工轨迹规划研究[D];广东工业大学;2011年
9 魏彦波;基于UG的碗形曲面数控加工技术研究[D];山东大学;2010年
10 吴剑锋;逆向工程中基于CCD的曲面测量方法研究[D];浙江大学;2005年
,本文编号:2197767
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2197767.html