渐进式软固结磨粒气压砂轮光整加工研究
[Abstract]:The finishing process in mould manufacturing is to correct the dimension accuracy and surface quality of the workpiece precisely, and the finishing process accounts for about 40-50% of the manufacturing time. For the application of laser hardening technology in the field of mould, the finishing method based on the pressure grinding wheel of soft bonded abrasive particles can solve the technical problems of high hardness, high wear resistance and complex free-form surface in the surface finishing of the mould strengthened by laser. Due to the lack of research on the surface morphology of soft bonded abrasive particles and surface finishing, there is not an effective model for surface processing simulation analysis. The results of early finishing experiments show that a large number of abrasive particles are shedding and the velocity of abrasive particles falling off is higher than that of binder, which greatly reduces the effective processing participation rate of abrasive particles and affects the finishing efficiency and processing quality. In order to realize the high efficiency and precision automatic finishing of mould surface strengthened by laser, the surface morphology model and finishing model of air pressure abrasive wheel with soft consolidation grain are studied and constructed on the basis of the existing research on the air pressure grinding wheel of soft consolidated abrasive particles. The simulation prediction of the actual surface processing is carried out, and the fabric of the air pressure grinding wheel for soft consolidated abrasive particles is optimized to improve the finishing efficiency and processing quality of the surface of the mould strengthened by laser. The main contents of this paper are as follows: (1) aiming at the construction of contact surface topography of soft bonded abrasive pneumatic grinding wheel, based on the surface characteristics of grinding wheel and the contact behavior of abrasive particle and workpiece, a surface topography model is constructed by re-constructing the model in random domain. A surface morphology model of non-Gao Si soft bonded abrasive pneumatic grinding wheel is established. The corresponding surface morphology can be generated by simulating the given parameters. (2) aiming at the problems of surface wear and abrasive particle shedding, etc. By improving the traditional pneumatic grinding wheel and establishing an improved progressive soft consolidation abrasive particle pneumatic grinding wheel, the problems of abrasive shedding and passivation, the low efficiency and reset position of replacing the grinding wheel head are overcome, and the idea of layer by layer machining is used. Widen machining roughness range, improve machining efficiency and improve machining quality. (3) the multi-layer elastomer model of progressive soft bonded abrasive pneumatic grinding wheel is constructed, and the dynamic simulation of inflatable pressure and rotation speed is carried out. The processing parameters such as air pressure 0-0.1MPa and rotational speed 1500rpm are selected as the process parameters. (4) according to the whole motion path of single abrasive and pneumatic wheel on soft consolidated abrasive, the corresponding relation between the abrasive particles in soft cutting and the micro-protrusions on the workpiece surface is established. The hardness coefficient of the surface material, the removal model of the microconvex body, the material removal constraint and so on are added to construct the machining model of the surface of the workpiece with the air pressure grinding wheel of the soft consolidated abrasive grain, and the machining parameters are given through the experiment. The corresponding workpiece surface is formed by simulation. (5) aiming at the machining target, the corresponding experimental scheme is designed, and the experimental platform for machining the soft consolidated abrasive particle pneumatic grinding wheel for laser strengthened surface is built, and the improved progressive soft consolidated abrasive pneumatic grinding wheel is prepared. Through finishing experiment, material removal and surface quality are analyzed to verify the correctness of grinding wheel surface morphology model and finishing model. It is proved that the air pressure grinding wheel of soft bonded abrasive particles is effective in the initial finishing process of laser strengthened surface, and compared with the traditional pneumatic grinding wheel and the progressive air pressure grinding wheel, the progressive abrasive layer not only optimizes the problem of abrasive particle shedding, The grinding process is continuous and smooth, and the surface quality of the progressive pneumatic grinding wheel is better than that of replacing the single-layer pneumatic grinding wheel manually, and the machining efficiency is increased by 34.6.
【学位授予单位】:浙江工业大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TG580.6
【相似文献】
相关期刊论文 前10条
1 迅一;砂轮的修整[J];机床与工具;1955年05期
2 陈永贵;砂轮硬度的测定和选择[J];机床与工具;1955年10期
3 艾振民;韩锡贤;;砂轮浸二硫化钼的新方法[J];机械工人.冷加工;1980年12期
4 赵鹭华;砂轮性能的评价[J];磨料磨具与磨削;1981年03期
5 中山一雄 ,高木纯一郎 ,谭瑞星;砂轮锐利性的测定[J];磨料磨具与磨削;1984年01期
6 董锡翰;迟大华;;砂轮硬度改善浅析[J];机械工程师;1986年02期
7 刘镇昌,陈日曜,阿部聪,村木和之;关于砂轮表面复映法的一些探讨[J];磨料磨具与磨削;1988年05期
8 申明志;砂轮变薄工具的制造与应用[J];机械工程师;1988年04期
9 肖安定;砂轮堵塞的测量[J];广西工学院学报;1994年04期
10 万隆;磨钢球砂轮干燥裂纹成因探讨[J];金刚石与磨料磨具工程;1995年05期
相关会议论文 前7条
1 李刚;白云利;;变频技术在砂轮制造业的应用[A];2000年晋冀鲁豫鄂蒙六省区机械工程学会学术研讨会论文集(河南分册)[C];2000年
2 王红军;李改利;;基于激光的砂轮地貌检测技术研究[A];北京机械工程学会2008年优秀论文集[C];2008年
3 王红军;李改利;;基于激光的砂轮地貌检测技术研究[A];第四届十三省区市机械工程学会科技论坛暨2008海南机械科技论坛论文集[C];2008年
4 吴永孝;张广玉;吕维新;徐建良;;超声波振动修整砂轮的研究[A];中国电子学会生产技术学分会机械加工专业委员会第六届学术年会论文集[C];1995年
5 贺献宝;;利用PVA砂轮提高工件表面粗糙度等级[A];晋冀鲁豫鄂蒙川云贵甘沪湘十二省区市机械工程学会学术年会论文集(河南分册)[C];2005年
6 王先逵;马明霞;应宝阁;;金属结合剂金刚石微粉砂轮电火花修锐技术研究[A];第八届全国电加工学术年会论文集[C];1997年
7 余剑武;何利华;尚振涛;尹韶辉;黎文;覃新元;;微细砂轮电火花修整实验研究[A];第15届全国特种加工学术会议论文集(上)[C];2013年
相关重要报纸文章 前2条
1 李长江;分切薄刀和砂轮的选用及使用方法[N];中国包装报;2006年
2 刘平;百名专家解读百种产品质量[N];中国质量报;2010年
相关博士学位论文 前10条
1 韦伟;渐进式软固结磨粒气压砂轮光整加工研究[D];浙江工业大学;2016年
2 李晓冬;砂轮在线液体自动平衡系统及其平衡精度的研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2004年
3 曾晰;软固结磨粒气压砂轮设计方法及材料去除特性研究[D];浙江工业大学;2013年
4 张小锋;关于砂轮地貌双目视觉检测技术的基础研究[D];南京航空航天大学;2007年
5 袁和平;磨料群可控排布砂轮的制备技术及其磨削性能[D];大连理工大学;2010年
6 赫青山;热管砂轮高效磨削加工技术研究[D];南京航空航天大学;2013年
7 庞子瑞;超高速点磨削陶瓷CBN砂轮性能的实验研究[D];东北大学;2009年
8 李长河;砂轮约束磨粒喷射精密光整加工机理及表面特性的研究[D];东北大学;2006年
9 刘月明;磨削过程建模与点磨削工艺的若干研究[D];东北大学;2012年
10 杨晓红;不平衡量信号的精密谱分析及其在砂轮动平衡测控仪中的应用[D];中国科学院研究生院(长春光学精密机械与物理研究所);2006年
相关硕士学位论文 前10条
1 项龙;叶序排布磨料超硬砂轮的磨削温度场研究[D];沈阳理工大学;2015年
2 刘志振;磨粒叶序排布电镀砂轮制造中的若干研究[D];沈阳理工大学;2015年
3 李晓聪;基于结构光视觉的砂轮轮廓三维测量系统的研究[D];哈尔滨工业大学;2015年
4 王凯;金属基金刚石圆弧砂轮在线电火花修整与检测技术[D];哈尔滨工业大学;2015年
5 乔璐;基于区间均匀接触磨削方法的砂轮有限元分析[D];东北大学;2013年
6 蒋秀忠;区域化固结磨粒气压砂轮对局域强化模具材料去除的研究[D];浙江工业大学;2015年
7 俞益民;软固结磨粒气压砂轮光整加工工艺研究[D];浙江工业大学;2015年
8 戴婷;冠型软固结磨粒气压砂轮接触应力分析与试验研究[D];浙江工业大学;2015年
9 陈志龙;软固结气压砂轮粘磨层力学性能及其接触力研究[D];浙江工业大学;2015年
10 庞浩;超声ELID复合加工电参数的研究[D];河南理工大学;2014年
,本文编号:2198074
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2198074.html