超声振动—溶质对铸造铝合金内耗的影响研究
[Abstract]:The cast aluminum alloy has a series of advantages such as good fluidity, good thermal conductivity, short casting period, good chemical stability and high specific strength. It has been widely used in various fields of manufacturing industry. The commonly used casting parts such as piston, rotary support, bearing, cylinder block and so on can not fully meet the needs of production and life because of its large vibration and serious noise. The existing technology can only improve these effects and can not satisfy the demand of human being for noise and vibration control fundamentally. So how to improve the damping property of materials and how to improve the effect of noise and vibration reduction has become a research topic. Internal friction technology is an effective means to study the microscopic mechanism of materials, to understand the microscopic properties of materials, to study the internal structure of materials, to understand the physical properties of materials, and to change the composition of materials to make them better. It is of great significance and practical value to meet the needs of production and life. In this paper, the aluminum liquid with four solute elements of Cu,Mg,Zn,Cr was cast under ultrasonic and non-ultrasonic conditions, and the internal friction properties of four different aluminum alloys were tested by multi-function internal friction instrument. The grain size was observed by optical microscope, element content in crystal was analyzed by scanning energy spectrum, heat treatment was carried out, the microstructure of different alloys was studied, and the characteristics of internal friction peak were understood. The mechanism of formation and its changing law are discussed, and the effect of internal friction peak on the grain size, internal structure, phase transformation and impurity of the alloy is studied. The experimental results are as follows: (1) the internal structure of aluminum alloy can be changed to some extent by adding different solute elements. By analyzing the information shown in the internal friction temperature curve, the microscopic mechanism of the alloy material, such as grain boundary size, the existence of precipitation phase or not, can be understood to a certain extent. The existence of impurity elements and the amount of impurity elements are a series of micro information. (2) applying ultrasonic vibration and changing the content of solute elements can change the grain size of the alloy to a certain extent, thus having an effect on the internal friction peak of grain boundary. The grain size of the alloy with ultrasonic is smaller than that without ultrasonic, and the peak temperature and peak height of the corresponding internal friction peak are lower. When the content of solute element is changed, the peak height and peak temperature of grain boundary internal friction peak decrease when the grain size is reduced, whereas the peak value and peak temperature increase. If the content of elements reaches to precipitate, there will be a new precipitation-type internal friction peak. (3) the types of internal friction peaks in four different aluminum alloys are different, and there is only one type of internal friction peak at grain boundary in Al-Cu alloy. There are two kinds of internal friction peaks at grain boundary and supersaturated phase transition in Al-Mg alloy, but there is only one internal friction peak caused by discontinuous precipitation in Al-Zn alloy. There are two kinds of internal friction peaks at grain boundaries and Snoek peaks in Al-Cr alloys. (4) the different internal friction peaks are produced by the formation of 尾 'phase in the demelted mesophase in the supersaturated phase when the recovery temperature is above the recovery temperature. The internal friction peak of phase transformation in Al-Zn alloy is formed by the precipitation of discontinuous precipitation at grain boundary and its development towards grain boundary. The internal friction peaks of grain boundary in Al-Cu, Al-Mg and Al-Cr alloys are all caused by hysteretic slip of grain boundary caused by forced vibration during heating. The internal friction peak of Snoek in Al-Cr alloy is caused by the point defect caused by the increase of non-metallic elements (Co) in the alloy.
【学位授予单位】:南昌航空大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TG292
【相似文献】
相关期刊论文 前10条
1 郑德友;孔凡霞;;超声振动扩孔纠偏研究[J];制造技术与机床;2013年03期
2 马世佩;;利用超声振动改善冷却液效率[J];航空工艺技术;1983年04期
3 黄文郁;朱炳森;;用超声波清洗机改装超声振动车削装置[J];机械开发;1984年04期
4 В·С·Лершun;刘作寰;;在拨管过程中应用超声振动[J];鞍山钢铁学院学报;1984年03期
5 张日升;;超声振动冲削[J];新技术新工艺;1984年06期
6 赵继;王立江;;超声振动车削表面的波谱分析[J];电加工;1986年04期
7 焦光明;汤铭权;;超声振动车削快速落刀装置的研制[J];电加工;1991年03期
8 张建中,于超,申奎东;超声振动扩孔的试验研究[J];电加工与模具;2000年06期
9 曾忠;微孔的超声振动钻削技术与工艺效果[J];机械工程师;2001年01期
10 张建中,李秀人,申奎东;超声振动干式扩孔的试验研究[J];电加工与模具;2004年01期
相关会议论文 前10条
1 赵继;王立江;;超声振动车削表面的波谱分析[A];第五届全国电加工学术年会论文集(特种加工篇与综合性论文篇)[C];1986年
2 招展;刘冠民;朱树新;;超声振动滚压45~#钢正交试验[A];第八届全国电加工学术年会论文集[C];1997年
3 祝锡晶;叙鸿均;;新型功率超声振动珩磨装置的研制[A];2005年中国机械工程学会年会论文集[C];2005年
4 杨继先;;陶瓷深孔加工的新方法——超声振动磨削[A];陕西省电加工学会第六届学术年会论文集[C];1996年
5 杨继先;杨素梅;张永宏;;超声振动车削铝基复合材料的研究[A];中国电子学会生产技术分会电加工专业委员会第六届学术年会论文集[C];2000年
6 杨继先;杨素梅;张永宏;;超声振动车削铝基复合材料的研究[A];陕西省机械工程学会电加工分会第七届学术年会论文集[C];2000年
7 陶国灿;王涛;邢栋梁;张建华;;超声振动辅助铣削表面纹理建模及其摩擦学性能优化[A];第15届全国特种加工学术会议论文集(下)[C];2013年
8 张洪丽;张金环;单绍福;;超声振动辅助磨削加工表面粗糙度[A];第15届全国特种加工学术会议论文集(下)[C];2013年
9 张勤河;张建华;张琪步;艾兴;;超声振动辅助气中放电加工实验分析[A];2005年中国机械工程学会年会论文集[C];2005年
10 张勤河;张建华;张琪步;艾兴;;超声振动辅助气中放电加工实验分析[A];2005年中国机械工程学会年会第11届全国特种加工学术会议专辑[C];2005年
相关博士学位论文 前10条
1 吕哲;超声振动辅助磨料水射流抛光冲蚀机理和工艺技术研究[D];山东大学;2015年
2 侯荣国;超声振动辅助磨料水射流脉动行为及其对加工机理影响机制研究[D];山东大学;2015年
3 孙智源;硬脆材料微结构光学功能表面的超声振动抛光技术研究[D];哈尔滨工业大学;2015年
4 陶国灿;超声振动辅助铣削鱼鳞状表面成形机理及表面性能研究[D];山东大学;2016年
5 齐海群;超声振动拉丝相关理论及其实验研究[D];哈尔滨工业大学;2009年
6 张洪丽;超声振动辅助磨削技术及机理研究[D];山东大学;2007年
7 沈学会;超声振动辅助铣削加工技术及机理研究[D];山东大学;2011年
8 陆昶;聚合物共混物融合缝结构与性能及超声振动下融合缝形态演变及其机理的研究[D];四川大学;2005年
9 闫鹏;超声振动辅助磨削—脉冲放电复合加工及其控制技术研究[D];山东大学;2009年
10 胡玉景;超声振动—磨削—脉冲放电复合加工技术及其智能控制的研究[D];山东大学;2006年
相关硕士学位论文 前10条
1 修晓;复合超声振动拉丝的理论与实验研究[D];哈尔滨工业大学;2008年
2 耿怡;金属外圆表面超声振动光整技术的研究[D];西安石油大学;2015年
3 刘小超;超声振动强化搅拌摩擦焊工艺及机理的研究[D];山东大学;2015年
4 张曼曼;超声振动辅助TA2纯钛箔板塑性变形行为与微冲裁机理研究[D];哈尔滨工业大学;2015年
5 李华;基于超声减摩原理的气缸运动副摩擦特性研究[D];哈尔滨工业大学;2015年
6 李华东;光学玻璃超声振动铣磨材料去除及表面质量研究[D];哈尔滨工业大学;2015年
7 刘宇杰;基于超声振动辅助的Sn2.5Ag0.7Cu0.1RE/C194铜合金的润湿及钎焊接头时效特性[D];河南科技大学;2015年
8 黄飞;超声振动微铣削动态仿真与实验分析[D];长春理工大学;2014年
9 汪强;Inconel 718超声振动辅助车削有限元仿真与实验研究[D];南昌航空大学;2014年
10 贾正首;功率超声振动珩磨技术应用研究[D];西南石油大学;2012年
,本文编号:2212207
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2212207.html