基于数据挖掘的冷连轧过程板形缺陷预测与诊断方法研究
[Abstract]:The cold continuous rolling process has the characteristics of multi-working condition, multi-variable, nonlinear, big data and so on. The formation of shape defects is complex, and the method based on mechanism model is difficult to predict and diagnose the shape defects on line. Taking the DSR shape control system of Baosteel 2030mm cold rolling process as the application object, this paper studies the shape prediction and defect identification of cold rolling process under multiple working conditions by using data driven techniques such as multivariate statistical analysis and data mining. In view of the fact that the product defect data of DSR dynamic flatness control system has a small sample under many working conditions and some working conditions, an on-line flatness monitoring method based on support vector machine (SVM) is proposed. Firstly, the principal components obtained by (PCA), are used as the input of support vector machine, and the shape variables are decomposed as the output of support vector machine. Finally, the shape regression prediction model with multiple input and single output is obtained. Then, the coefficients of support vector machine are optimized by Bayesian criterion, and the regression model of support vector machine is updated to overcome the influence of uncertainty information on shape prediction accuracy. The experimental results show that this method can effectively solve the problem of rapid shape modeling under multiple working conditions, and the shape prediction accuracy is high. In view of the characteristics of DSR dynamic flatness control system such as multi-condition and massive data, this paper improves the traditional algorithm of frequent pattern mining, and realizes the frequent pattern mining of shape defect data under multiple working conditions. First, the process variables are reduced by principal component analysis (PCA); then, the threshold of SPE statistics in PCA method is set to select fault data; and then the correlation features of shape defects are mined by improved Apriori algorithm. Finally, the frequent items of each defect are obtained, and the corresponding diagnosis knowledge is used to identify the fault cause. The experimental results show that the diagnostic results of this method are in good agreement with those of experts in the field, and the method has high reliability and has a good prospect of engineering application.
【学位授予单位】:南京航空航天大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TG335.9;TP311.13
【参考文献】
相关期刊论文 前10条
1 杨洪富;贾晓亮;任寿伟;;基于数据驱动的航空发动机故障诊断与预测方法综述[J];航空精密制造技术;2016年05期
2 宁慧;王素红;崔立刚;郭笑语;徐丽;;基于改进的FP-tree最大频繁模式挖掘算法[J];应用科技;2016年02期
3 谢永华;张鸣敏;杨乐;张恒德;;基于支持向量机回归的城市PM_(2.5)浓度预测[J];计算机工程与设计;2015年11期
4 单燕;李玲娟;孙杜靖;;基于主成分分析的并行化数据流降维算法研究[J];南京邮电大学学报(自然科学版);2015年05期
5 王乐;常艳芬;王水;;基于模式增长的不确定数据的频繁模式挖掘算法[J];计算机应用;2015年07期
6 唐颖峰;陈世平;;一种面向分布式数据流的闭频繁模式挖掘方法[J];计算机应用研究;2015年12期
7 王男帅;薛静锋;胡昌振;单纯;李志强;;基于遗传优化支持向量机的软件缺陷预测模型[J];中国科技论文;2015年02期
8 韩少鹏;陆宁云;姜斌;;基于不确定信息的系统建模与状态预测方法[J];华东理工大学学报(自然科学版);2013年01期
9 黄志坚;;轧机轴承与轧辊智能诊断与维护技术探讨[J];南方金属;2012年05期
10 李海波;柴天佑;岳恒;;浮选工艺指标KPCA-ELM软测量模型及应用[J];化工学报;2012年09期
相关博士学位论文 前5条
1 黄爱芹;基于数据驱动的调节阀故障诊断方法研究[D];山东大学;2015年
2 卢春红;基于数据驱动的故障检测与诊断技术及其应用研究[D];江南大学;2015年
3 乔景慧;水泥生料分解过程智能控制系统的研究[D];东北大学;2012年
4 贺建军;基于高斯过程模型的机器学习算法研究及应用[D];大连理工大学;2012年
5 张秀玲;冷带轧机板形智能识别与智能控制研究[D];燕山大学;2003年
相关硕士学位论文 前9条
1 曹哲;基于神经网络与案例推理的车载设备故障诊断研究[D];北京交通大学;2016年
2 杨正永;基于流形学习算法的非高斯过程监控方法研究及在化工过程监控中的应用[D];华东理工大学;2015年
3 赵青鹤;高铁信号系统的系统级故障诊断方法研究[D];北京交通大学;2014年
4 刘宇航;基于主成分分析的故障监测方法及其应用研究[D];华东理工大学;2012年
5 楼洋;基于种群排序和引力分组模型的进化算法研究[D];宁波大学;2012年
6 李楠;板形模式识别与控制的智能方法研究[D];燕山大学;2006年
7 朱学彪;2800轧机液压系统在线监测与故障诊断[D];武汉科技大学;2005年
8 滕召旗;轧机液压故障智能诊断系统的研究与开发[D];广东工业大学;2002年
9 王霞;基于神经网络的非线性系统传感器故障诊断研究[D];西北工业大学;2002年
,本文编号:2219525
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2219525.html