基于丝材电弧增材制造Ti6A14V-xB合金的组织性能及模拟
[Abstract]:Titanium and titanium alloys are widely used in various fields because of their high strength, low density, high temperature resistance, corrosion resistance, non-magnetic and good biocompatibility. However, the traditional forming process of titanium and titanium alloys requires follow-up treatment such as vacuum melting, forging and a large number of cutting, which reduces the material utilization rate and increases the production cost. Manufacturing technology can shorten the process, improve the utilization rate of titanium alloy materials, and optimize the alloy composition, which can improve the mechanical properties of titanium alloy. Based on this, this paper studies the manufacturing technology of titanium alloy with trace boron and wire arc augmentation, and the evolution of rapidly solidified microstructure in the process of titanium alloy wire arc augmentation. Firstly, Ti6Al14V-xB (wt%, x 0, 0.05, 0.1, 0.5) alloys with different boron contents were prepared by high vacuum non-consumptive melting and suction casting. The effects of different trace boron addition on the casting microstructure and mechanical properties of Ti6Al4V-xB were studied. Secondly, Ti6Al4V and Ti6Al4V-0.05B wires were used as raw materials and arc as heat source. The solidification process, microstructure and mechanical properties of arc augmented titanium alloy wire were studied. Finally, the rapid solidification process of arc augmented Ti6Al4V and Ti6Al4V-0.05B alloy wire was simulated by cellular automata-finite element method. The mechanism of solid-liquid transition, initial beta nucleation and growth in different stages of wire arc augmentation is studied. The results are as follows: (1) The addition of trace B affects the initial beta crystal growth of titanium alloy. The enrichment of B in the front of solid-liquid hinders the initial beta-Ti growth and refines the grain effectively. When the boron content exceeds 0.1wt%, the grain size is obviously refined. The tensile strength limit of Ti6Al4V-xB alloy increases monotonously with the increase of boron content, which is the result of fine grain strengthening and precipitation strengthening; the plasticity of Ti6Al4V-0.05B alloy increases by 15%, while the plasticity of Ti6Al4V-0.1B and Ti6Al4V-0.5B alloy decreases by more than 40% because of precipitation brittleness. (2) In the arc augmentation process of Ti6Al4V wire, due to the high heat input of the arc, effective metallurgical bonding is achieved between each deposited area, fusion area and deposited area, without obvious deposited interface and titanium martensite, and the microstructure of each area is stable a + beta lamella. Compared with as-cast Ti6Al4V, the titanium alloy made by arc augmentation has not only fine initial beta grain, but also small interlamellar spacing of alpha+beta. Its tensile strength and elongation are higher than that of as-cast titanium alloy, and the tensile fracture surface is fine dimple-like toughness fracture. (3) The titanium alloy made by arc augmentation of Ti6Al4V-0.05B wire has been fabricated. In the process, finer grains were obtained with a small amount of irregular acicular TiB precipitation. Compared with as-cast Ti6Al4V-0.05B alloy, the grain size was reduced and tended to dendrite morphology. The tensile strength increased by 6.2% and the elongation increased by 28.7%. (4) Simulation of solidification microstructure evolution in arc augmented Ti6Al4V wire The results show that the orientation of the initial beta crystal is disordered and the grain size is small; with the increase of the height of the augmented material, the temperature gradient slows down, the width of the average solid-liquid transition paste region increases, the average grain size of the initial beta crystal increases, and the orientation of the crystal tends to the direction of heat transfer (perpendicular to the direction of the cold substrate); the simulation results and the initial production of the actual augmented material. In addition, the simulation results of Ti6Al4V-0.05B alloy show that the addition of 0.05 wt% boron improves the nucleation rate and growth rate, which makes the initial beta grain show more dendritic growth.
【学位授予单位】:西安理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TG146.23
【参考文献】
相关期刊论文 前10条
1 黄立国;陈玉勇;;硼对钛合金成形能力和力学性能影响的研究进展[J];机械工程材料;2016年06期
2 张璞;侯华;赵宇宏;靳玉春;赵宇辉;眭怀明;;基于CAFE模型的镍基合金定向凝固过程显微组织模拟[J];中国有色金属学报;2016年04期
3 陈君;张清;;模拟海水环境中电化学状态对TC4钛合金腐蚀磨损行为的影响(英文)[J];Transactions of Nonferrous Metals Society of China;2016年04期
4 张小伟;;金属增材制造技术在航空发动机领域的应用[J];航空动力学报;2016年01期
5 汤慧萍;王建;逯圣路;杨广宇;;电子束选区熔化成形技术研究进展[J];中国材料进展;2015年03期
6 杨健;陈静;张强;;激光近净成形TC21钛合金的组织与性能[J];金属热处理;2015年03期
7 刘全明;张朝晖;刘世锋;杨海瑛;;钛合金在航空航天及武器装备领域的应用与发展[J];钢铁研究学报;2015年03期
8 王科;;钛合金制备方法的研究进展[J];材料导报;2014年S2期
9 王华明;;高性能大型金属构件激光增材制造:若干材料基础问题[J];航空学报;2014年10期
10 曾光;韩志宇;梁书锦;张鹏;陈小林;张平祥;;金属零件3D打印技术的应用研究[J];中国材料进展;2014年06期
相关博士学位论文 前1条
1 黄立国;含硼钛合金高温变形及组织性能研究[D];哈尔滨工业大学;2014年
相关硕士学位论文 前8条
1 李帅;定向凝固ZA35合金组织模拟和实验研究[D];辽宁工程技术大学;2015年
2 杨雪梅;全域铸锭宏微观耦合的数值模拟研究[D];河北工业大学;2015年
3 石璐铭;B、Y对高温钛合金组织性能影响的研究[D];哈尔滨工业大学;2014年
4 宋迎德;镁合金凝固组织模拟[D];大连理工大学;2012年
5 娄军;快速凝固钛合金的组织与性能研究[D];沈阳大学;2012年
6 王锦林;Ti6Al4V钛合金非平衡显微组织的研究[D];武汉科技大学;2010年
7 闫欣;基于CA-FE法高温合金铸件成形质量的CAE仿真[D];西北工业大学;2006年
8 畅春玲;元胞自动机模型应用及模糊元胞自动机[D];大连海事大学;2005年
,本文编号:2235237
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2235237.html