金刚石涂层硬质合金HfC-SiC过渡层制备及结合强度研究
[Abstract]:The coated cutting tools obtained by depositing diamond on the surface of carbide (WC-Co) cutter body by chemical vapor deposition can not only give full play to the advantages of high hardness, high wear resistance and high thermal conductivity of diamond, but also keep the characteristics of good toughness and high strength of cemented carbide, such as non-ferrous metals and their alloys, various particles or fiber reinforced composites. However, the low bonding strength between diamond coatings and cemented carbide matrix limits the application of diamond coated tools to a certain extent. There are two main reasons for the low bonding strength: one is the deposition process of Co in cemented carbide in diamond coatings. It can inhibit the nucleation of diamond and lead to the formation of graphite and amorphous carbon at the interface. Secondly, there are differences in hardness and thermal expansion coefficient (CTE) between diamond and cemented carbide, which lead to the thermal stress problem of the coating. SiC/HfC and HfC-SiC/HfC transition layers metallurgically bonded to cemented carbide substrate were prepared to reduce the negative catalytic effect of Co, adjust the thermal expansion coefficient of transition layer and improve the bonding strength of diamond coating. C/HfC is a double-layer gradient structure, mainly composed of HfC inner layer and HfC-SiC outer layer with gradient distribution of composition.In this paper, two new transition layer structures were obtained by optimizing and improving the DGPSA device. The bonding strength of typical transition layer structure to diamond coating was studied by phase analysis, microstructure characterization and performance testing. The main research contents and results are as follows: (1) the feasibility of fabricating SiC by DGPSA technology is explored. the gas flow field in DGPSA device is simulated and optimized by COMSOL software. the device is designed according to the simulation results. The experimental results show that the existing device can not realize the deposition of SiC even under the condition of high TMS flow rate. The main reason for the failure of SiC preparation is that the thermal shield blocks the reaction gas. It is possible to obtain uniform and high intensity gas flow field above the sample and in the plasma region by means of surface entry and simultaneous outflow of temperature observation holes and new outflow holes. However, the prepared SiC coating is not suitable for direct use as the transition layer of diamond-coated cemented carbide because of its poor compactness and bonding strength due to the influence of CO catalysis. (2) SiC / HFC double-layer transition layer was prepared on WC-Co cemented carbide substrate by using an improved DGPSA device with matrix temperature and TMS flow rate as variables, respectively. The surface and interface morphology, phase composition, hardness and bonding strength of the SiC / HFC double-layer transition layer were tested and analyzed, and the suitable structure, properties and preparation conditions of the SiC / HFC double-layer transition layer were discussed. Good. the transition layer prepared under these parameters can effectively prevent the diffusion of CO to the deposited surface, and can deposit dense and uniform nano-diamond coatings with high strength. the bonding strength of the coatings reaches hf_3 level. (3) on the basis of the research results (2), by increasing the TMS flow rate in the DGPSA process, in the way of hard bonding. HfC-SiC/HfC double-layer gradient transition layers were prepared on the diamond surface, and the effects of different flow rates on the composition, microstructure and properties of the transition layers were studied. The results show that the microstructure of HfC-SiC/HfC double-layer gradient transition layer is similar to that of SiC/HfC double-layer transition layer, but the interface transition between the inner and outer layers is good, and the HfC and SiC are gradient distributed in the outer layer. Compared with the diamond coating deposited on the HfC-SiC/HfC double-layer gradient transition layer, the diamond coating deposited on the HfC-SiC/HfC double-layer gradient transition layer has higher bond strength and lower thermal stress, which indicates that the HfC-Si C/HfC double-layer transition layer with gradient distribution of composition and property is an effective way to improve the bond strength of the diamond coating/cemented carbide system. Ways and means.
【学位授予单位】:太原理工大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TG174.4
【相似文献】
相关期刊论文 前10条
1 张建华;王福贞;翟东恒;王鲁闽;;离子沉积的过渡层[J];新技术新工艺;1983年05期
2 陈霞,李杰训,李东成;油水中间过渡层的预防及处理技术[J];油气田地面工程;2002年05期
3 孙德超,柯黎明,邢丽,刘鸽平;陶瓷与金属梯度过渡层的自蔓延高温合成[J];焊接学报;2000年03期
4 蔺增;巴德纯;;过渡层对含氢非晶碳膜生长的影响[J];真空科学与技术学报;2006年06期
5 刘中青,史宝田;异种钢焊接接头过渡层影响因素的研究[J];吉林工学院学报;1987年04期
6 张鹏展;沈明荣;徐俞;;二氧化钛过渡层对脉冲激光沉积钛酸锶钡薄膜微结构和介电性质的影响[J];功能材料与器件学报;2008年06期
7 苏革,闻立时,成会明;金钢石薄膜与基材之间过渡层技术的研究[J];材料科学与工艺;1998年04期
8 赵栋才;任妮;马占吉;肖更竭;武生虎;;七种金属基底上类金刚石膜的过渡层制备研究[J];真空科学与技术学报;2008年04期
9 袁国洲;;粉末冶金航空刹车材料过渡层功能的研究[J];湖南冶金;1993年05期
10 苟小军;高原文;;界面过渡层对磁-电-弹性层合板多场耦合特征的影响[J];功能材料;2012年14期
相关会议论文 前10条
1 王佳宇;吕宪义;孙越;白亦真;金曾孙;邹广田;;金刚石厚膜过渡层研究[A];第三届中国功能材料及其应用学术会议论文集[C];1998年
2 吴行阳;大花继赖;中村拳子;田中章浩;张建华;;梯度过渡层对非晶含氢碳膜性能的影响[A];2011年全国青年摩擦学与表面工程学术会议论文集[C];2011年
3 刘凡新;;硅过渡层厚度对超薄四面体碳膜结构的影响[A];第十七届全国光散射学术会议摘要文集[C];2013年
4 江南;张泽;孙碧武;;金刚石膜过渡层及其初始形核过程的TEM研究[A];第七次全国电子显微学会议论文摘要集[C];1993年
5 孙喜莲;徐学科;邵建达;;铬过渡层对银膜的微结构、光学性质及附着力的影响[A];上海市激光学会2005年学术年会论文集[C];2005年
6 孙丽丽;代伟;张栋;汪爱英;;Cr掺杂及Cr过渡层对类金刚石薄膜附着力的影响[A];第八届全国表面工程学术会议暨第三届青年表面工程学术论坛论文集(五)[C];2010年
7 张迎肖;索红莉;赵跃;刘敏;王榕;何东;周美玲;;在Ni5W基底上用MOD方法制备涂层导体过渡层的研究[A];2006年全国功能材料学术年会专辑[C];2006年
8 黄一鸣;吴行阳;邓兆兴;张建华;;不同射频功率下基于多功率源梯度过渡层的掺硅非晶碳膜的制备及水润滑性能[A];第十一届全国摩擦学大会论文集[C];2013年
9 沈岩;全海涛;刘永庆;庞忠瑞;;采用过渡层焊接铸铁与低碳钢[A];石油工程焊接技术交流研讨会论文集[C];2005年
10 谭红琳;王雪雯;;GaAs与Si之间过渡层的设计及其分析[A];第五届中国功能材料及其应用学术会议论文集Ⅱ[C];2004年
相关博士学位论文 前6条
1 任毅;低温合成碳化物过渡层对金刚石膜生长的作用机理研究[D];中国地质大学(北京);2016年
2 孙瑞;氮掺杂氧化镓薄膜为过渡层制备氮化镓纳米线及其探测器[D];哈尔滨工业大学;2015年
3 高洁;金刚石涂层硬质合金HfC-SiC过渡层制备及结合强度研究[D];太原理工大学;2017年
4 陈丹;六铝酸盐—氧化铝复合过渡层的原位制备及其粘附性能研究[D];天津大学;2014年
5 弋晓明;基于土基耐久性的路基与半刚性基层间的过渡层研究[D];山东大学;2014年
6 崔莲;表面过渡层对铁电薄膜介电性质的影响[D];哈尔滨工业大学;2010年
相关硕士学位论文 前10条
1 董运超;过渡层对PET基SiO_2薄膜结合强度的影响[D];湖南工业大学;2015年
2 赵洋;扩散多元节技术在Cu-Ni-Sn弹性铜合金中的应用研究[D];北京有色金属研究总院;2015年
3 赵希安;易碳化过渡层对碳基硬质薄膜结构和性能的影响[D];中国地质大学(北京);2015年
4 马奔驰;Sn/Al界面Al_2O_3过渡层形成机理及对界面结合强度的影响[D];哈尔滨工业大学;2015年
5 任程;化学溶液法制备La_2Zr_2O_7过渡层厚膜及取向的研究[D];北京工业大学;2015年
6 高雪艳;Mo基过渡层硬质合金金刚石涂层的制备研究[D];太原理工大学;2016年
7 姚红伟;界面过渡层构筑及其对碳纤维复合材料界面、抗疲劳性能的影响[D];天津工业大学;2016年
8 王超;铜—铝两相材料固液成型的分子动力学模拟[D];华中科技大学;2015年
9 邵家霖;过渡层在铝/钢搅拌摩擦钎焊中的作用[D];兰州理工大学;2014年
10 张浩;离心自蔓延复合管金属过渡层微观结构及力学性能研究[D];太原理工大学;2006年
,本文编号:2237504
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2237504.html