电渣重熔Mn18Cr18N奥氏体不锈钢热变形过程组织演变的研究
[Abstract]:Mn18Cr18N high-nitrogen austenitic stainless steel is widely used in generator ring production because of its excellent corrosion resistance and ductility. Due to the restriction of metallurgical technology, the traditional casting microstructure of the steel is coarse in grain size and serious in defect, and the application of electroslag remelting technology greatly improves the microstructure quality of the cast billet. Although the microstructure defects are greatly reduced, the grain structure is basically composed of coarse columnar crystals. Mn18Cr18N steel is not a phase change steel and can not be optimized by heat treatment. Therefore, grain refinement has become a key technology to improve microstructure and properties. The microstructure state of the blanks used in the ring protection machining is mostly in the split forging state. Due to the numerous working procedures and the complex process during the forging process, the hot deformation behavior of the as-cast structure of the Mn18Cr18N steel remelted by electroslag is studied. It has important practical significance to optimize the production process of protective ring. The main contents of this paper are as follows: firstly, unidirectional thermal compression experiments were carried out for electroslag remelted Mn18Cr18N austenitic stainless steel. The stress-strain curves under different deformation conditions were obtained, and the hot deformation law of the steel was analyzed. The results show that the steel is very sensitive to strain rate and has obvious positive strain rate sensitivity. Secondly, the dynamic recrystallization of Mn18Cr18N austenitic stainless steel under different deformation conditions was studied. The effects of temperature and strain rate on the dynamic recrystallization softening behavior were analyzed and the constitutive equation and kinetic model of the steel were established. The dynamic recrystallization percentage of deformed microstructure was obtained by means of microstructure observation of metallographic microscope (OM). The dynamic recrystallization percentage model and grain size model were established by origin data fitting software. The results show that the dynamic recrystallization grains are mainly formed in the "necklace" pattern from the original grain boundary. With the increase of temperature and the decrease of strain rate, the percentage of dynamic recrystallization increases gradually. Compared with the forged microstructure, the deformation activation energy of as-cast microstructure is higher, but the dynamic recrystallization activation energy is lower, which indicates that the as-cast microstructure is more difficult to produce plastic deformation, but more prone to dynamic recrystallization. Then, the energy dissipation law of the microstructure of Mn18Cr18N austenitic stainless steel under dynamic recrystallization mechanism was analyzed. Based on the dynamic material model, the hot working diagram of the steel was established under different strain. It is found that the hot working properties of the steel can be improved by increasing the strain. The establishment of the hot working diagram is helpful to analyze the influence of the process parameters on the microstructure and to provide the theoretical basis for optimizing the processing technology of the protective ring. Finally, the effects of different temperature, holding time and strain on the static recrystallization of Mn18Cr18N austenitic stainless steel in Gleeble-1500D thermal simulation machine were studied. The results show that the higher the temperature, the longer the holding time and the higher the percentage of static recrystallization.
【学位授予单位】:太原科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TG142.1
【参考文献】
相关期刊论文 前10条
1 李飞;张华煜;何文武;陈慧琴;郭会光;;Mn18Cr18N奥氏体不锈钢的压缩拉伸连续加载变形行为[J];金属学报;2016年08期
2 吴双辉;王辉亭;安春生;武丽娜;霍岩;丁军锋;文道维;;护环用1Mn18Cr18N钢的组织和性能[J];金属热处理;2016年07期
3 曾祥群;刘润藻;朱荣;汤旭炜;沈汉;;高氮钢热加工性能研究[J];工业加热;2016年02期
4 孙朝阳;李亚民;祥雨;杨竞;;316LN高温热变形行为与热加工图研究[J];稀有金属材料与工程;2016年03期
5 朱红春;姜周华;李花兵;李可斌;;电渣重熔1Mn18Cr18N护环钢补缩过程的温度变化规律[J];东北大学学报(自然科学版);2015年11期
6 杨晓雅;何岸;谢甘霖;王西涛;;核电用奥氏体不锈钢的动态再结晶行为[J];工程科学学报;2015年11期
7 季长涛;范艳华;陈咨伟;安秋沿;;0Cr18Mn18N0.6高氮无镍奥氏体不锈钢的变形与再结晶[J];热加工工艺;2015年21期
8 汤旭炜;朱荣;李超;刘伟;;电渣重熔工艺对高氮钢脱硫的影响[J];钢铁研究学报;2015年06期
9 何文武;孙述利;刘建生;郭会光;;Mn18Cr18N护环钢静态再结晶组织及模型[J];材料科学与工艺;2014年06期
10 汤旭炜;朱荣;李超;;电渣重熔高氮钢的洁净度研究[J];炼钢;2014年05期
相关会议论文 前1条
1 韩学三;吉世俭;许学军;刘庄;;Mn18Cr18N钢冷变形强化机理研究[A];中国机械工程学会锻压学会第六届学术年会论文集[C];1995年
相关博士学位论文 前2条
1 谢甘霖;AP1000核电主管道316LN奥氏体不锈钢热变形过程的组织演变模拟[D];北京科技大学;2015年
2 闫晨;高铬合金钢电渣重熔工艺及渣金特性研究[D];东北大学;2015年
相关硕士学位论文 前7条
1 张丽舸;316LN静态再结晶行为及其组织演变模拟研究[D];燕山大学;2014年
2 肜鹏;百万千瓦强度级1Mn18Cr18N护环制造工艺研究[D];大连理工大学;2012年
3 李春阳;热加工图绘制新方法及应用研究[D];燕山大学;2012年
4 陈明秋;电渣重熔钢锭动态温度场及微观组织的研究[D];东北大学;2010年
5 陈明明;316LN不锈钢锻造过程晶粒演变规律实验与模拟研究[D];太原科技大学;2010年
6 郭银芳;Mn18Cr18N护环钢多火次热变形微观组织演变的研究[D];太原科技大学;2009年
7 陆秋敏;电渣重熔工艺中渣金两相流动、传热及凝固的研究[D];东北大学 ;2009年
,本文编号:2333479
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2333479.html