当前位置:主页 > 科技论文 > 铸造论文 >

大型镍基合金异型环件环轧过程有限元模拟

发布时间:2018-12-10 11:16
【摘要】:基于Simufact建立了大型截面镍基合金异形环件热辗扩成形(环轧)过程的热-力耦合三维有限元模型,模拟计算并揭示了摩擦因子、主辊线速度、芯辊进给速度、芯辊直径等工艺条件对环件环轧过程中的等效应变、轧制力、环件尺寸等的影响规律,用于指导实际环轧生产中的工艺参数设定和优化。结果表明:(1)主辊(驱动辊)摩擦因子与锥辊摩擦因子的增加均有利于外径的增加,而芯辊摩擦因子的增加则有利于内径的增加;主辊摩擦因子的增加会同时增加环件的径向与轴向轧制力;主辊摩擦因子的增加可以使环件内外表面等效应变更均匀,使变形更均匀,可以在一定程度上使塑性区更容易穿透环件壁厚。(2)随着芯辊的进给速度增大,芯辊每转进给量增加,使塑性区更容易穿透壁厚,从而使变形更均匀;环件每次通过径向孔型时变形区面积增大,更多的金属发生塑性变形,径向轧制力增加;变形区增大使环件内外径变小;但芯辊进给速度过大则会使局部变形过大,易使椭圆度增加,导致环件畸形。(3)随着主辊线速度的增加,环坯的变形更多集中在环件的表面区域,从而使环件表面处的等效应变比中间部分增加的更为明显;环件每次通过径向与轴向孔型时变形区面积减小,金属塑性变形区减小,轧制力减小;由于环件的内外侧更容易变形,所以内外径最终值随着主辊线速度的增加有增大的趋势。(4)随着芯辊直径的增大,在径向孔型中,会导致金属在环件内表面流动的阻力增大,从而使环件内表面等效应变减小,而在轴向方向上,上下表面等效应变并没有明显变化;芯辊与环件内表面接触面积变大,使更多金属发生塑性变形,使径向轧制力逐渐增大,而轴向轧制力的变化趋势并无明显变化;在环件尺寸方面,芯辊直径的变化对环件尺寸的影响并不明显。(5)对于本文研究的φ1500mm(外径)×φ860mm(内径)×350mm(厚度)大型异形截面镍基合金环件,为了得到形状、尺寸合适,变形均匀的产品,且在环轧过程中不易出现缺陷,通过有限元模拟得出的较为合理的环轧工艺为:主辊线速度为1100mm/s,芯辊进给速度为1.5~1mm/s,主辊、芯辊、锥辊摩擦因子分别为0.7、0.7、0.4,芯辊直径为280mm。
[Abstract]:Based on Simufact, the thermo-mechanical coupling three-dimensional finite element model for the hot rolling forming (ring rolling) process of large section nickel-base alloy special-shaped ring is established. The friction factor, the linear velocity of the main roll and the feed speed of the core roll are simulated and calculated. The influence of core roll diameter on the equivalent strain, rolling force and ring size during ring rolling is used to guide the setting and optimization of process parameters in practical ring rolling. The results show that: (1) the increase of friction factor of main roll (drive roll) and cone roll is favorable to the increase of outer diameter, while the increase of friction factor of core roll is favorable to the increase of inner diameter; The increase of friction factor of the main roll will increase the radial and axial rolling force of the ring at the same time. The increase of friction factor of the main roll can make the inner and outer surface effects of the ring uniform, make the deformation more uniform, and make the plastic zone more easily penetrate through the wall thickness of the ring to some extent. (2) with the increase of the feed speed of the core roller, With the increase of the feed rate of the core roll, the plastic zone is easier to penetrate the wall thickness and the deformation is more uniform. When the ring passes through the radial pass, the area of the deformation zone increases, more metals occur plastic deformation, and the radial rolling force increases, and the inner and outer diameter of the ring becomes smaller with the increase of the deformation zone. However, if the feed speed of the core roll is too large, the deformation of the ring will be too large, and the ellipticity will increase easily, which will lead to the deformity of the ring. (3) with the increase of the linear velocity of the main roll, the deformation of the ring billet is more concentrated in the surface area of the ring. The equivalent strain at the surface of the ring is more obvious than that at the middle part. The deformation zone area decreases, the plastic deformation zone decreases and the rolling force decreases when the ring passes through radial and axial pass. Because the inner and outer sides of the ring are more easily deformed, the final value of the inner and outer diameter increases with the increase of the linear velocity of the main roll. (4) with the increase of the diameter of the core-roller, the final value of the inner and outer diameter increases in the radial pass. The resistance of metal flow on the inner surface of the ring will increase, and the equivalent strain on the inner surface of the ring will decrease, but in the axial direction, the equivalent strain on the upper and lower surface will not change obviously. The inner surface contact area between core-roller and ring increases, making more metals plastic deformation and increasing radial rolling force, but the change trend of axial rolling force is not obvious. In the aspect of ring size, the influence of core-roller diameter on ring size is not obvious. (5) for 蠁 1500mm (outer diameter) 脳 蠁 860mm (internal diameter) 脳 350mm (thickness) large special-section nickel-based alloy ring, in order to obtain shape, The products with suitable size and uniform deformation are not easy to appear defects in the process of ring rolling. The reasonable ring rolling process obtained by finite element simulation is as follows: linear speed of main roll is 1100mm / s, feed speed of core roll is 1.5mm / s, main roll, core roll, main roll, core roll, The friction factor of cone roller is 0.7 ~ 0.7m ~ (0.4), and the diameter of core roller is 280 mm 路m ~ (-1).
【学位授予单位】:辽宁科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TG339

【参考文献】

相关期刊论文 前10条

1 邓加东;华林;钱东升;;环坯温度分布状态对径轴向轧制变形遗传影响[J];机械工程学报;2014年14期

2 童应学;;环件轧制参数与质量关系研究[J];航天制造技术;2010年05期

3 华林;韩星会;;环件轧制和摆动辗压精密成形技术[J];精密成形工程;2009年01期

4 孙志超;杨合;欧新哲;;Thermo-mechanical coupled analysis of hot ring rolling process[J];Transactions of Nonferrous Metals Society of China;2008年05期

5 华林;阮维;张金;;基于Matlab的环件轧制进给控制系统的仿真[J];武汉理工大学学报;2008年06期

6 刘东;付明杰;万自永;杨勇;张华;;GH4169合金矩形截面环轧制曲线的实验研究[J];航空学报;2007年05期

7 杨文兵;姜海峰;;基于DEFORM环件轧制塑性成形过程数字仿真[J];华中科技大学学报(城市科学版);2006年02期

8 李春天,黄欣;环件轧制技术及其在国内的应用[J];锻压装备与制造技术;2004年05期

9 周存龙,姚开云,孙斌煜,李国桢;用上限元法计算L型截面环件在轧制过程中的轧制力[J];太原重型机械学院学报;1999年03期

10 郭正华,解春雷,李尚健;环件热轧动态过程有限元模拟[J];塑性工程学报;1999年02期

相关博士学位论文 前1条

1 王泽武;环件虚拟轧制技术及过程优化研究[D];华中科技大学;2007年

相关硕士学位论文 前2条

1 蒋涛;环件轧制的工艺参数分析及过程模拟[D];中南大学;2013年

2 周广;大型环件径轴向轧制成形工艺理论研究[D];武汉理工大学;2011年



本文编号:2370476

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2370476.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户e88e2***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com