H13钢硬态铣削切屑相变及加工表面完整性研究
[Abstract]:The hard cutting of H13 steel is characterized by large plastic deformation, high strain and high cutting heat. The crystal in the cutting zone will undergo severe deformation and material transformation, forming a metamorphic layer. The chip is usually serrated, and the existence of sawtooth chip metamorphic layer affects the friction between cutting tool and chip, affects cutting temperature, cutting force and tool wear, etc. Therefore, it is of great significance to study the formation mechanism of chip metamorphic layer. In this paper, the formation mechanism of stress, strain and temperature field in cutting process is studied with the aid of the National Natural Science Foundation. The mechanism of phase transition of chip metamorphic layer is discussed, and the machining surface integrity is analyzed in order to optimize milling process. Provide technical support for obtaining performance-compliant artifacts. The main research work is as follows: (1) the two-dimensional finite element simulation model for hard milling of H13 steel is established. The milling process is simulated and the validity of the simulation results of the finite element model is verified. The model results show that the chip thickness changes from thick to thin in the milling process, and the chip becomes sawtooth in the initial stage of milling. Then, with the movement of the cutter, the chip thickness decreases and the chip becomes a continuous shape. Compared with the experimental results, the error of the simulation cutting force is less than 10, which verifies the accuracy of the finite element model. The variation of cutting temperature with cutting speed and cutting tool radius during milling is studied. (2) based on the results of finite element simulation, the formation process of H13 steel chip and the phase transformation of the modified layer are analyzed. The stress, strain, temperature distribution and experimental metamorphic layer distribution in the chip backside and adiabatic shear band are studied. The results show that the distribution of metamorphic layer on the back side of chip and adiabatic shear zone is highly consistent with stress strain and temperature. The metamorphic layer in adiabatic shear zone is related to grain deformation and recrystallization, and the formation of metamorphic layer on the back of chip is related to phase transformation. The influence of alloying elements, stress and strain energy on austenitic transformation temperature during hard milling was studied theoretically. Combined with the finite element simulation results, the size of the hard milling metamorphic layer is predicted. The error between the prediction result and the experimental result is not more than 15. It is of great significance to study the phase transition mechanism of the metamorphic layer. (3) combined with different cutting parameters, The changes of evaluation indexes of surface integrity of H13 steel hard milling considering the influence of blunt radius of cutting tools are studied. The machined surface morphology is analyzed, and the milling surface morphology has obvious periodicity. The influence of different parameters on surface roughness is analyzed. The empirical model of surface roughness considering the influence of blunt radius of cutting tool is established and the significance test is carried out. The influence of different parameters on residual stress is analyzed, and an empirical model of residual stress based on quadratic polynomial is established. The surface quality of workpiece under different parameters was analyzed by using work hardening as evaluation index. The variation of surface microhardness and hardening degree of surface layer with parameters was studied. It is found that the degree of work hardening increases with the increase of the radius of blunt circle. The microhardness analysis of the subsurface layer of the workpiece shows that the microhardness decreases with the increase of the layer depth, that is, with the increase of the layer depth, the plastic strengthening effect decreases gradually, and the thermal softening effect is gradually strengthened. The effect of thermal softening is greater than that of strengthening in a certain depth, and the hardness is smaller than that of matrix. In this paper, the formation mechanism of chip metamorphic layer is analyzed, and the surface integrity of H13 steel milling is studied, which can provide technical support for revealing milling mechanism of H] 3 steel, guiding milling process and obtaining good surface integrity.
【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TG54
【相似文献】
相关期刊论文 前10条
1 郑兴人;切屑形成过程的破坏问题[J];北京航空学院学报;1957年02期
2 张春江,苑伟政;钛合金切屑形成过程的动态研究[J];航空学报;1987年03期
3 曲贵民,,徐亦红,李振加;短螺卷切屑折断的实验研究[J];哈尔滨电工学院学报;1996年02期
4 郑敏利,李振加,韦银利,融亦鸣;形成切屑上向弯曲非折断插入区的理论研究[J];机械工程学报;2001年08期
5 李振加,郑敏利,韦银利,刘二亮,融亦鸣;切屑空间运动轨迹及其约束方程的研究[J];机械工程学报;2001年12期
6 李启东,郭全英,张宏;微观动态切屑形成原理与分析[J];沈阳工业大学学报;2002年02期
7 张中民,李振加,郑敏利,严复钢,郑伟,姜彬,刘二亮,融亦鸣;切屑折断界限的理论研究[J];机械工程学报;2002年08期
8 成群林;柯映林;董辉跃;杨勇;;高速硬加工中切屑成形的有限元模拟[J];浙江大学学报(工学版);2007年03期
9 管小燕;任家隆;李伟;杭华;陈文燕;;基于数值模拟的钛合金锯齿状切屑研究[J];江苏科技大学学报(自然科学版);2007年04期
10 李淼林;;车削加工过程切屑形态分析及仿真[J];机电工程技术;2010年07期
相关会议论文 前2条
1 傅惠南;王成勇;;微薄切屑的形成和特点[A];面向21世纪的生产工程——2001年“面向21世纪的生产工程”学术会议暨企业生产工程与产品创新专题研讨会论文集[C];2001年
2 刘牧宇;洪学勤;周光莉;梁季夫;;切屑变形的扫描电镜研究[A];第三次中国电子显微学会议论文摘要集(二)[C];1983年
相关博士学位论文 前10条
1 庆振华;高强度钢42CrMo硬态切削切屑形成机理的研究[D];南京航空航天大学;2015年
2 鲁世红;高速切削锯齿形切屑的实验研究与本构建模[D];南京航空航天大学;2009年
3 杨奇彪;高速切削锯齿形切屑的形成机理及表征[D];山东大学;2012年
4 吴春凌;大应变切削制备纳米晶/超细晶材料的研究[D];华南理工大学;2010年
5 苏国胜;高速切削锯齿形切屑形成过程与形成机理研究[D];山东大学;2011年
6 郭建英;基于不同刀—屑摩擦模型的金属切削过程动力学研究[D];太原理工大学;2010年
7 姜峰;不同冷却润滑条件Ti6Al4V高速加工机理研究[D];山东大学;2009年
8 朱江新;切削—挤压成形过程分析与建模方法研究[D];西安理工大学;2006年
9 李林文;面向硬切削的切削区域温度场解析建模及实验研究[D];华中科技大学;2013年
10 张克国;高速切削变形过程的类流体特性研究[D];山东大学;2014年
相关硕士学位论文 前10条
1 陈琳;高速切削切屑破坏特性及本构关系的研究[D];沈阳理工大学;2015年
2 谢浚尧;基于切屑形态分析的钛合金螺旋铣孔热力耦合模型[D];浙江大学;2016年
3 张平;大芯厚钻头内刃参数的实验研究[D];大连工业大学;2016年
4 高亚运;金属切削过程中锯齿形切屑形成机理研究[D];上海工程技术大学;2016年
5 胡少华;AZ31镁合金高速切削行为研究[D];湖南科技大学;2016年
6 齐民;镍基高温合金GH3039高速铣削实验与切屑变形分析[D];辽宁工程技术大学;2014年
7 杜倩倩;硬态车削淬硬钢切屑形成机理及表面完整性研究[D];济南大学;2016年
8 闫振国;H13钢硬态铣削切屑相变及加工表面完整性研究[D];山东大学;2017年
9 李娜;虚拟车削系统及切屑预测可视化的研究[D];天津大学;2007年
10 田雪竹;切屑折断过程及其仿真的研究[D];哈尔滨理工大学;2006年
本文编号:2375562
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2375562.html