钐铁合金渗氮动力学实验研究
[Abstract]:Since the 1990s, many researchers have carried out research work on samarium ferroalloy nitriding, but at present most samarium ferroalloy nitriding is mainly concentrated in low temperature solid powder nitriding, its biggest disadvantage is the long nitriding time. The nitridation is uneven and the nitriding efficiency is low. Aiming at the shortcoming of low temperature solid powder nitriding, this paper presents the nitriding of samarium ferroalloy melt. In this paper, the nitriding kinetics model of samarium ferroalloy bottom blowing bubble is established, and the formation model of bottom blowing bubble is studied: the relationship between the minimum pressure of bubble formation and external pressure and the radius of blowing pipe; Bubble growth model: the higher the external atmospheric pressure, the slower the bubble growth rate; the bubble mass transfer model: in the bubble floating process, the bubble mass transfer rate increases first and then decreases. Finally, the mechanism of aggregation and breakup of bubbles after floating to liquid level is described. Secondly, nitriding experiment of samarium ferroalloy melt was carried out. In this experiment, two nitriding methods were used, one was static nitriding of samarium ferroalloy melt, the other was nitriding with bottom blowing nitrogen bubble of samarium ferroalloy melt. Through the static nitriding experiment of samarium ferroalloy melt, it is found that because of the long standing nitriding time, the samarium volatilization in samarium ferroalloy is serious, and because there is a small amount of air in the furnace cavity, the oxygen and the volatile samarium form the oxide samarium to cover the matrix surface. The diffusion of nitrogen elements into samarium ferroalloy was prevented, so the static nitriding did not achieve a good effect. Samarium ferroalloy bottom blowing nitriding melting time is short, effectively avoiding the volatilization of samarium. There are three phases in the matrix, namely 伪-Fe phase, Sm2Fe17 phase and rich phase. It is found that there are nitrogen elements in the Sm2Fe17 phase, the highest content of which is about 0.9%. It is concluded that there are two reasons why the nitrogen content of samarium ferroalloy does not reach the expected content of nitrogen in Sm2Fe17N3. One reason is that the carbon in samarium ferroalloy material also affects the infiltration of nitrogen atoms. Second, there are 伪-Fe phase and rich phase in the matrix after nitriding, and the matrix is not homogeneous Sm2Fe17 phase. In addition, the increase of nitriding temperature, nitriding time and nitriding flow rate can improve the nitrogen content in samarium ferroalloy.
【学位授予单位】:华北理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TG156.82
【参考文献】
相关期刊论文 前10条
1 ;“高性能钐铁氮各向异性磁粉产业化技术研究和开发”通过验收和鉴定[J];稀土信息;2014年11期
2 都有为;;磁性材料进展概览[J];功能材料;2014年10期
3 王东兴;张廷安;刘燕;朱小峰;;氧气底吹造锍过程中气泡行为的水模实验[J];东北大学学报(自然科学版);2013年12期
4 闫雪飞;王桂军;王涌;金良安;;水溶液中气泡聚并的研究进展[J];化学工业与工程;2013年06期
5 邓庚凤;何桂荣;邓华军;黄崛起;;还原扩散法制备钐铁氮磁性材料的组织结构与性能研究[J];中国稀土学报;2010年06期
6 王民;李红卫;于敦波;李扩社;罗阳;;Sm_2Fe_(17)N_x粘结永磁体磁性能的影响因素[J];金属功能材料;2010年02期
7 杨峥;;脉冲熔融法测定钛合金中氧、氮的不确定度评定[J];分析试验室;2009年S2期
8 黄奥;陶晓林;顾华志;张美杰;汪厚植;胡铁山;;气幕挡墙中间包数理模拟及实践[J];炼钢;2009年03期
9 郭广思;王广太;于伟业;;Sm_2Fe_(17)N_x的制备[J];稀土;2005年06期
10 朱江江,陈伯义;水面舰船尾流气泡半径变化规律的研究[J];热科学与技术;2005年02期
相关博士学位论文 前3条
1 邵品;冶金熔体内气泡行为的数值模拟研究[D];东北大学;2015年
2 罗阳;快淬钐铁基化合物的亚稳态结构与磁性[D];北京有色金属研究总院;2014年
3 刘静如;非牛顿流体中多气泡相互作用、聚并与破裂过程的数值模拟[D];天津大学;2014年
相关硕士学位论文 前4条
1 肖小飞;钐铁氮的扩散法制备、结构和磁性[D];中国计量学院;2015年
2 张松林;Sm-Fe-N纳米薄片的制备、结构及其磁性能研究[D];昆明理工大学;2014年
3 周航;底吹气泡在液体中的行为研究[D];东北大学;2013年
4 郭平;Sm_2Fe_(17)N_x/Fe_3Pt系纳米永磁材料的制备、组织与磁性能[D];河北工业大学;2008年
,本文编号:2376800
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2376800.html