面向电梯零部件智能制造的切削参数优化及知识库研究与开发
[Abstract]:With the development of the 2025 Plan of Manufacturing in China, the manufacturing industry is facing a new direction of development, that is, intelligent manufacturing. The intelligent optimization of cutting parameters is an important part of intelligent manufacturing technology. Reasonable cutting parameters can improve the machining efficiency of the workpiece, improve the machining quality of the workpiece and prolong the service life of the tool. At present, the choice of cutting parameters mainly depends on the practical experience of the technicians or through the inquiry of cutting manual, which is more dependent on people, and the choice of cutting parameters is more conservative, which will restrict the manufacturing resources to give full play to its maximum benefit. In view of the above problems, combined with the existing research results of artificial intelligence technology, the knowledge representation, reasoning and optimization selection of cutting parameters in the process of intelligent selection of cutting parameters are studied and explored. The knowledge base of cutting parameters of elevator parts is established. The main research contents of this paper are as follows: (1) the characteristics of elevator parts manufacturing process are analyzed, and the significance of realizing intelligent selection of elevator parts manufacturing process parameters is further expounded. On the basis of the research status of cutting parameter optimization and knowledge base at home and abroad, the problems of cutting parameter optimization in elevator parts manufacturing are found, and the development trend of this research direction is summarized. The main content and chapter arrangement of this subject are sorted out. (2) the cutting process principle of discrete manufacturing process of elevator parts is expounded, and the actual situation of an elevator parts enterprise is combined. The elevator parts are classified and the machining process of elevator parts is analyzed. The application of optimization theory in mechanical manufacturing is studied, which lays a theoretical foundation for further research on optimization model of cutting parameters and intelligent selection of cutting parameters. (3) the relevant factors in the actual machining process of elevator parts are studied. Based on the idea of green low carbon manufacturing and taking processing time and CO2 emission as the optimization target, the cutting parameter optimization model under continuous working step is established. The multi-objective optimization method is studied and an improved artificial fish swarm algorithm based on Pareto is proposed. The performance of the algorithm is tested, and the improved algorithm is applied to the actual cutting case. It provides case knowledge for the construction of knowledge base. (4) based on the theoretical analysis of cutting parameters optimization of elevator parts machining process, combined with the actual situation of an elevator parts manufacturing enterprise, The whole structure of the knowledge base of cutting parameters of elevator parts is determined. The knowledge representation method of cutting parameters of elevator parts is established by synthetically using all kinds of techniques and methods, and the intelligent selection method of cutting parameters based on CBR and RBR is determined. (5) based on the above research theory, The system is designed and implemented by using PowerBuilder as client development tool, SQL Server2012 as database management tool and Matlab development language. On this basis, a prototype system of intelligent selection of cutting parameters is designed, which can meet the actual needs of enterprises, and the intelligent selection of cutting parameters of elevator parts is preliminarily realized.
【学位授予单位】:江南大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TG501
【参考文献】
相关期刊论文 前10条
1 岳彩旭;蔡春彬;黄翠;刘二亮;;切削加工过程有限元仿真研究的最新进展[J];系统仿真学报;2016年04期
2 张金伟;;中国互联网+制造战略发展探讨[J];智富时代;2016年04期
3 王芸;孙辉;;多策略并行学习的异构粒子群优化算法[J];计算机应用;2015年11期
4 王喜文;;智能制造:新一轮工业革命的主攻方向[J];人民论坛·学术前沿;2015年19期
5 周济;;智能制造——“中国制造2025”的主攻方向[J];中国机械工程;2015年17期
6 孙秋霞;;智能制造,中国制造的未来[J];中国科技奖励;2015年07期
7 王喜文;;工业4.0、互联网+、中国制造2025 中国制造业转型升级的未来方向[J];国家治理;2015年23期
8 张洁;吕佑龙;;智能制造的现状与发展趋势[J];高科技与产业化;2015年03期
9 冒志敏;郑洪源;丁秋林;;一种基于案例推理的动态故障集诊断算法[J];计算机技术与发展;2015年05期
10 张相木;;智能制造引领新一轮产业变革[J];军工文化;2015年02期
相关博士学位论文 前10条
1 刘学斌;面向源工艺定制的切削参数优化技术研究[D];北京理工大学;2015年
2 刘铭;大型筒节切削参数优选数据库系统的研究[D];哈尔滨理工大学;2014年
3 蔡盈芳;基于本体的航空产品知识库构建研究[D];北京交通大学;2011年
4 刘伟;智能CAPP系统中工艺路线和切削参数的决策研究[D];天津大学;2010年
5 王军;智能集成CAD/CAPP系统关键技术研究[D];燕山大学;2010年
6 邵芳;难加工材料切削刀具磨损的热力学特性研究[D];山东大学;2010年
7 张晓辉;基于切削过程物理模型的参数优化及其数据库实现[D];上海交通大学;2009年
8 相克俊;混合推理高速切削数据库系统的研究与开发[D];山东大学;2007年
9 张臣;数控铣削加工物理仿真关键技术研究[D];南京航空航天大学;2006年
10 李晓磊;一种新型的智能优化方法-人工鱼群算法[D];浙江大学;2003年
相关硕士学位论文 前2条
1 郝传海;汽车行业金属切削数据库系统的研究与开发[D];山东大学;2011年
2 任小平;难加工材料切削数据库系统的研究与开发[D];山东大学;2010年
,本文编号:2377755
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2377755.html