5083铝合金宽应变率下拉压力学性能及其本构模型描述
[Abstract]:With the wide application of 5083 aluminum alloy in manufacturing industry, especially the development of high-speed train and ship industry, it is required to have good mechanical properties under the condition of high speed collision and large plastic deformation. At the same time, the yield stress, work hardening rate and other parameters will change under different loading rate and temperature. Therefore, it is of great significance to study and analyze the mechanical properties of 5083 aluminum alloy under dynamic load for the design of engineering structures and the numerical calculation of impact problems. In this paper, by means of MTS material testing machine, INSTRON dynamic material testing machine and split Hopkinson test system, the quasi-static test and mechanical tensile and compression tests of 5083 aluminum alloy under medium and high strain rate loading are carried out. The stress-strain curves of 5083 aluminum alloy were obtained at a wide strain rate (2 脳 10-/s-7 脳 103 / s). The experimental results show that the stress-strain curves obtained under the same experimental conditions are always lower than the compression curves in the strengthening stage. The yield stress of tension and compression under different strain rates is basically the same under different loading conditions, and the yield stress varies with the strain rate. When the strain rate is less than 10 / s, The yield stress of the material shows a negative strain rate effect, and then with the increase of the strain rate, the yield stress presents a positive strain rate effect. After entering the yield stage, there is a more obvious law of strain hardening in the form of power rate, and the work hardening rate decreases with the strain rate, which is typical of FCC metal. Based on the above experimental results, this paper summarizes various models that can be used to describe the constitutive relations of 5083 aluminum alloy in impact tests in recent years, and improves the Johnson-Cook model (JC model), which is the most commonly used model to describe the dynamic constitutive relations of 5083 aluminum alloy. Because the damage mechanism of meso-level is not taken into account in this model, the dynamic damage mechanism of this kind of material is analyzed, and the damage theory of ductile metal and the microscopic fracture mechanism are studied. The theory and mechanism of dynamic softening of 5083 aluminum alloy were explained and constitutive equation was introduced. The comparison between the experimental curve and the model curve shows that the simulation has good applicability. The research can provide effective scientific basis, analysis model and necessary reference for the engineering application of the material. In the course of the study, it is found that the original Johnson-Cook constitutive model is simple in form and few in physical parameters, but it belongs to the semi-empirical and semi-physical constitutive model. The drawback is that the mechanical behavior of work hardening rate increases or decreases with strain and strain rate. Therefore, the plastic flow behavior of polycrystalline FCC materials at wide strain rate is systematically analyzed, and the abnormal yield behavior of 5083 aluminum alloy at wide strain rate and the experimental phenomenon of reducing work hardening rate are discussed. The deformation mechanism of the above phenomenon is the result of competition of two-phase alloy elements at different strain rates. Based on the dislocation dynamics concept and thermal activation theory, combined with the strengthening mechanism of alloy elements, the strengthening model of Copley and Kear is introduced to reconstruct the constitutive model of Zerilli-Armstrong. The experimental curves and fitting results are compared. It is proved that this model has better fitting effect than Johnson-Cook constitutive model. By comparing the experimental curve with the curve obtained from the model, the model is fitted well, which indicates that the model has a better ability to predict the plastic flow stress of this kind of material.
【学位授予单位】:西南交通大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TG146.21
【相似文献】
相关期刊论文 前10条
1 宋孝浜;王春霞;;纤维增强复合材料应变率效应研究进展[J];广西纺织科技;2006年04期
2 甘秋兰,张俊彦;温度和应变率对泡沫镍拉伸行为的影响[J];湘潭大学自然科学学报;2003年04期
3 毛明忠;熊杰;杨斌;熊涛;周凯;;Kevlar~汶964C纤维束拉伸性能的应变率和温度效应[J];纺织学报;2008年11期
4 于水生;卢玉斌;蔡勇;;工程材料的应变率效应及其统一模型[J];固体力学学报;2013年S1期
5 李彰明,杨良坤,王靖涛;岩石强度应变率阈值效应与局部二次破坏模拟探讨[J];岩石力学与工程学报;2004年02期
6 吴长河;冯晓伟;叶培;符志;刘占芳;;应变率对硫化橡胶压缩力学性能的影响[J];功能材料;2013年08期
7 金滩,蔡光起;材料的应变率强化与磨削加工中的尺寸效应[J];中国机械工程;1999年12期
8 王学滨,赵杨峰,张智慧,潘一山;考虑应变率及应变梯度效应的断层岩爆分析[J];岩石力学与工程学报;2003年11期
9 曾智;李玉龙;郭亚洲;陈煊;王雷;;两种典型铺层玻璃纤维复合材料的拉伸力学行为[J];航空材料学报;2013年03期
10 陈荣;卢芳云;林玉亮;王瑞峰;;一种含铝炸药压缩力学性能和本构关系研究[J];含能材料;2007年05期
相关会议论文 前10条
1 安彤;秦飞;刘亚男;白洁;;应变率效应对微系统封装焊锡接点力学行为的影响[A];中国力学学会学术大会'2009论文摘要集[C];2009年
2 施惠基;蔡明春;牛莉莎;;金属材料应变率相关的塑性变形细观机制[A];塑性力学新进展——2011年全国塑性力学会议论文集[C];2011年
3 席丰;张云;;基于J-C模型的受冲击钢梁的位移计算和两个应变率本构模型的比较分析[A];塑性力学新进展——2011年全国塑性力学会议论文集[C];2011年
4 秦q;杨黎明;胡时胜;;金属应变率效应机理分析[A];第七届全国爆炸力学实验技术学会会议论文集[C];2012年
5 关锦清;周刚;文潮;唐仕英;林英睿;刘晓新;李迅;;20g钢冲击拉伸与压缩特性实验研究[A];第八届全国爆炸力学学术会议论文集[C];2007年
6 王学滨;赵杨峰;张智慧;潘一山;;考虑应变率及应变梯度效应的断层岩爆分析[A];第八届全国岩石动力学学术会议论文集[C];2003年
7 梁昌玉;李晓;马超锋;;中等应变率加载条件下岩石的变形和力学特性研究进展及展望[A];中国科学院地质与地球物理研究所2012年度(第12届)学术论文汇编——工程地质与水资源研究室[C];2013年
8 叶晓明;吴德伦;;应变率相关本构理论在声测中的应用[A];重庆岩石力学与工程学会第一届学术讨论会论文集[C];1992年
9 王永刚;蒋招绣;;高应变率和高低温条件下高强度硬铝合金压缩力学行为实验研究[A];第七届全国爆炸力学实验技术学会会议论文集[C];2012年
10 项笑炎;张春晓;何翔;王武;张磊;;大变形时温度和应变率对沥青混凝土动态力学性能的影响[A];第3届全国工程安全与防护学术会议论文集[C];2012年
相关博士学位论文 前9条
1 朱耀;AA 7055铝合金在不同温度及应变率下力学性能的实验研究[D];哈尔滨工业大学;2010年
2 王文明;考虑应变率效应的结构抗震分析方法研究[D];大连理工大学;2013年
3 张皓;材料应变率效应对钢筋混凝土框—剪结构地震反应的影响[D];大连理工大学;2012年
4 竺铝涛;纤维力学性质应变率效应和针织复合材料弹道冲击破坏机理[D];东华大学;2010年
5 尚世明;普通混凝土多轴动态性能试验研究[D];大连理工大学;2013年
6 宫凤强;动静组合加载下岩石力学特性和动态强度准则的试验研究[D];中南大学;2010年
7 罗景润;PBX的损伤、断裂及本构关系研究[D];中国工程物理研究院;2001年
8 侯仰青;三维机织物拉伸性质应变率效应实验和数值研究&新型蜂窝芯材夹层复合材料板力学性能实验和数值分析[D];东华大学;2013年
9 郑宇轩;韧性材料的动态碎裂特性研究[D];中国科学技术大学;2013年
相关硕士学位论文 前10条
1 张龙辉;透明聚氨酯胶片动态力学性能研究[D];华南理工大学;2015年
2 贾培奇;蜂窝铝材料面内尺寸效应及应变率影响研究[D];太原理工大学;2016年
3 朱俊儿;应变率相关的高强钢板材屈服准则与失效模型研究及应用[D];清华大学;2015年
4 侯远;冲击载荷下深部细砂岩的力学性能试验研究[D];河南理工大学;2015年
5 高宁;5083铝合金宽应变率下拉压力学性能及其本构模型描述[D];西南交通大学;2016年
6 赵九州;三维编织复合材料冲击行为与动态强度研究[D];哈尔滨工业大学;2016年
7 陈冬强;考虑应变率和温度影响的道砟胶动力特性实验研究[D];浙江大学;2016年
8 陈朝中;无定形聚合物力学行为的应变率依赖性研究[D];湘潭大学;2009年
9 刘芳;四步法三维编织复合材料冲击拉伸力学性能[D];东华大学;2005年
10 吴青松;温度和应变率对低合金钢力学行为的影响[D];哈尔滨工程大学;2005年
,本文编号:2402402
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2402402.html