锆基非晶合金在过冷液相区的氧化行为
[Abstract]:In this paper, the effects of heating conditions, surface morphology and stress state on the oxidation behavior of amorphous alloy Zr55Cu30Al10Ni5 in the supercooled liquid phase region were studied, and the oxidation mechanism of the amorphous alloy in the supercooled liquid phase region was discussed. The comprehensive properties of the oxidized amorphous alloy samples were evaluated. The oxidation behavior of amorphous alloys under different heating conditions was observed by changing the heating temperature and holding time. According to the thermogravimetric curves and isothermal crystallization curves, it is found that the kinetic behavior of oxidation obeys the law of multistage parabolic rate, and the transformation of kinetic behavior is caused by crystallization. Precipitated particles consisting of Cu and CuO are formed on the surface of the oxide layer. The main composition of the oxide layer is t _ 2O _ 2, mg _ 2-ZrO _ 2 and A _ 120 _ 3. With the aggravation of oxidation degree, the structure of oxide layer changes from single layer to multi-layer. The oxidation rate of amorphous alloy in the supercooled liquid phase is controlled by ion diffusion. The Cu ion diffuses outward and the O ion diffuses inward. The surface morphology of amorphous alloy was obtained by surface grinding and polishing, and the effect of surface morphology on oxidation rate was analyzed. The results show that the size and quantity of precipitated particles increase and the thickness of oxide layer increases with the increase of abrasive particle size. It is proved by thermodynamic analysis that the effect of surface roughness on oxidation is directly determined by the sharpness of the surface scratch rather than the surface roughness. From the point of view of diffusion kinetics, the mechanism of promoting oxidation of amorphous alloy by rough surface is explained. The effect of stress state on the oxidation behavior of amorphous alloy was analyzed by applying constant tension / compression load to the sample during oxidation. It is proved that compressive stress can inhibit the oxidation of amorphous alloy, while tensile stress can promote the oxidation of amorphous alloy, but the effect of both is limited. Based on the analysis of microstructure and chemical composition of amorphous alloy samples before and after oxidation, the oxidation mechanism in the supercooled liquid phase region was discussed. In the early stage of oxidation, oxide grows in dendrite form through lattice diffusion. When the substrate layer is completely crystallized, the oxide layer grows through the grain boundary diffusion. The Cu ion continues to diffuse outward from the grain boundary in the oxide layer, resulting in the formation of connected cracks in the oxide layer. Gaseous O2 molecules enter the oxide layer through these gaps, on the one hand continue to promote the growth of the oxide layer, on the other hand, lead to the formation of a new sublayer structure in the formed oxide layer. The microhardness, friction coefficient and corrosion resistance of the oxidized amorphous alloy samples were evaluated by nano indentation, nano scratch and potentiodynamic scanning, and the effect of oxidation on the properties of the amorphous alloy was analyzed. The results show that after oxidation, the microhardness of the oxide layer and the substrate layer is significantly increased, and the friction coefficient of the surface decreases, which is beneficial to the reduction of the flow resistance during the forming process. The increase of the corrosion potential indicates that the corrosion resistance of the oxide layer and the substrate layer is improved. In conclusion, the oxidation of Zr55Cu30Al10Ni5 amorphous alloy in the supercooled liquid phase will significantly affect the surface morphology, size accuracy and comprehensive properties of thermoplastic forming products. By controlling the parameters such as temperature and time during thermoplastic forming of amorphous alloy, the negative effects caused by oxidation can not only be avoided, but also the strengthening of the products may be realized at the same time.
【学位授予单位】:华中科技大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TG139.8
【相似文献】
相关期刊论文 前10条
1 晓敏;生产非晶合金丝的新工艺[J];金属功能材料;2001年03期
2 黄智,白海洋,景秀年,王志新,王万录;非晶合金中的低温电阻率极小行为研究[J];物理学报;2004年10期
3 王晓军;陈学定;夏天东;康凯;彭彪林;;非晶合金应用现状[J];材料导报;2006年10期
4 汪卫华;;非晶合金塑性研究的新进展[J];自然杂志;2006年06期
5 李雷鸣;徐锦锋;;大体积非晶合金的制备技术[J];铸造技术;2007年10期
6 ;第4届全国非晶合金及其复合材料学术会议召开[J];科学通报;2007年23期
7 张哲峰;伍复发;范吉堂;张辉;;非晶合金材料的变形与断裂[J];中国科学(G辑:物理学 力学 天文学);2008年04期
8 伍复发;张哲峰;;非晶合金的变形与断裂行为[J];中国基础科学;2008年04期
9 侯轶轩;;浅谈非晶合金材料的变形与断裂[J];科协论坛(下半月);2009年05期
10 姜大伟;牛玉超;贾强;赵红;;非晶合金拉应力流变测量实验装置的研制[J];实验室研究与探索;2010年08期
相关会议论文 前10条
1 孙兵兵;王艳波;文军;杨海;隋曼龄;;电镜样品制备方法对非晶合金结构的影响[A];2006年全国电子显微学会议论文集[C];2006年
2 孙笠;崔振江;宋启洪;王景唐;;用于多相催化的非晶合金催化剂[A];首届中国功能材料及其应用学术会议论文集[C];1992年
3 陈艳;蒋敏强;魏宇杰;戴兰宏;;基于原子结构及相互作用势的非晶合金断裂准则[A];第十二届全国物理力学学术会议论文摘要集[C];2012年
4 肖勋;张春华;;硅钢与非晶合金使用情况的比较以及材料的改善建议[A];2010第11届中国电工钢专业学术年会论文集[C];2010年
5 房卫萍;杨凯珍;张宇鹏;刘凤美;刘正林;刘师田;易江龙;许磊;;低碳经济下的非晶合金发展与应用[A];低碳技术与材料产业发展研讨会论文集[C];2010年
6 沈宁福;张国胜;王西科;杨占胜;;大比表面积非晶合金催化材料的研究[A];2000年材料科学与工程新进展(下)——2000年中国材料研讨会论文集[C];2000年
7 卢志超;李德仁;周少雄;;非晶合金丝的制备及巨磁阻抗效应的应用[A];2000年材料科学与工程新进展(下)——2000年中国材料研讨会论文集[C];2000年
8 邢力谦;;非晶合金的应用及进一步研究[A];科技、工程与经济社会协调发展——中国科协第五届青年学术年会论文集[C];2004年
9 郭文全;王景唐;;描述非晶合金粘度与其熔体粘度关系的公式[A];首届中国功能材料及其应用学术会议论文集[C];1992年
10 冯翔;杨玉英;江道祥;;非晶合金材料行业产业化发展初探[A];2011年安徽省科协年会——机械工程分年会论文集[C];2011年
相关重要报纸文章 前10条
1 谢斌 王琳;非晶合金产品前景看好[N];中国电力报;2007年
2 谢斌 王琳;顺特电气:推广非晶合金产品[N];中国电力报;2007年
3 本报记者 倪e,
本文编号:2431008
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2431008.html