互连焊点热电耦合下的电迁移行为研究
[Abstract]:With the development of the miniaturization trend of electronic products, the electrical migration becomes an unnegligible reliability problem. The microminiaturization of the push force forces the size of the microsolder joint to decrease continuously, and the current density through the welding spot continues to increase, and the current density through the welding spot is now up to 104A/ cm2. In addition, during the lead-free transition of the electronic product, there will be a combination of lead and lead-free. At present, the research of composite welding spot is still in process and organization performance, and the research of its electromigration reliability is also blank. Therefore, the research on the reliability of the electromigration reliability of the lead-free solder joint and the composite welding spot is of great significance. In this study, the electro-migration behavior of Sn-Ag-Cu lead-free solder joint with different Ag content under the condition of thermoelectric couple is studied. The influence of the influence factors such as Ag content and temperature on the electromigration behavior of the interface is discussed, and the effect of electromigration on the mechanical properties of the solder joint is also studied. In this paper, the electrical migration of Sn-3.0Ag-0.5Cu and Sn-37Pb composite solder joints is studied. The interface behavior of the single-component solder joint and the composite solder joint is discussed, and the growth model of the interface IMC is given, and the average failure time of the electric migration of the solder joint is calculated. The results show that the increase of Ag content in a certain range can effectively improve the reliability and the temperature of the solder joint. The Sn-Sn phase in the solder joint matrix has strong anisotropy, resulting in an imbalance of the atomic flux flowing through the Si-Sn phase during the electromigration process, and the rotation of the crystal grains further indicates that the grain boundary is formed and the depression is formed at the welding spot. The electrical migration has an obvious influence on the tensile property of the solder joint, the tensile strength of the welding spot is reduced, the migration of the interface IMC reduces the bonding strength of the interface and the substrate, and the fracture position of the welding spot is changed from the fracture of the graphite material to the cathode interface. In the study of electromigration behavior of composite solder joint, it was found that the Sn-3.0Ag-0.5Cu mesh eutectic phase in the structure composite solder joint was coarsened under the action of the thermo-electric coupling and migrated from the cathode to the anode. The thickness of the anodic interface of the solder joint was not obviously increased before 500 h, and the large amount of Cu6Sn5 particles in the Sn-3.0Ag-0.5Cu alloy gradually migrated to the anode interface and the thickness of the Sn-3.0Ag-0.5Cu alloy gradually increased. Under the action of electromigration, the change of the IMC thickness of the cathode interface of the welding spot is affected by the thickness of the IMC, and the thickness of the IMC in the anode interface is affected by various factors such as the composition of the alloy, the structure of the welding spot, the time of the energization and the temperature. The current density distribution and temperature distribution in the welding spot are studied by the finite element method. The results show that the current loading mode has a significant influence on the current density distribution in the welding spot, and the Joule heat of the structure composite welding spot is between the lead-free solder joint and the lead-free solder joint. The results of the Black equation show that the average failure time of the structural composite solder joint is between the Sn-Ag-Cu solder joint and the Sn-37Pb solder joint.
【学位授予单位】:江苏科技大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TG40
【相似文献】
相关期刊论文 前10条
1 黄明亮;陈雷达;周少明;;电迁移对Ni/Sn3.0Ag0.5Cu/Cu焊点界面反应的影响[J];金属学报;2012年03期
2 姚健;卫国强;石永华;;无铅电子封装中的电迁移[J];焊接技术;2010年03期
3 米绍曾;铝金属化层中的电迁移[J];宇航材料工艺;1986年04期
4 林华水,田昭武;电迁移微离子色谱及其应用[J];分析化学;1993年03期
5 黄明亮;周少明;陈雷达;张志杰;;Ni-P消耗对焊点电迁移失效机理的影响[J];金属学报;2013年01期
6 陈雷达;周少明;黄明亮;;电迁移对Ni/Sn/Ni-P焊点界面反应的影响[J];稀有金属材料与工程;2012年10期
7 D·T·Peterson;高盘铬;;钆中碳、氮和氧的电迁移[J];稀土与铌;1974年01期
8 陈军;毛昌辉;;铝铜互连线电迁移失效的研究[J];稀有金属;2009年04期
9 何洪文;徐广臣;郭福;;电迁移引发Cu/SnBi/Cu焊点组织形貌的演变[J];稀有金属材料与工程;2010年S1期
10 徐广臣;何洪文;聂京凯;郭福;;Ni颗粒对SnBi焊点电迁移的抑制作用[J];电子元件与材料;2008年11期
相关会议论文 前1条
1 王渊;苏飞;张铮;;电迁移作用下微焊点的微观结构变化及宏观塑性变形[A];北京力学会第20届学术年会论文集[C];2014年
相关博士学位论文 前6条
1 张志杰;微互连焊点液—固电迁移行为与机理研究[D];大连理工大学;2016年
2 张金松;纯锡覆层晶须生长及无铅焊点电迁移的研究[D];华中科技大学;2008年
3 何亮;基于噪声的金属互连电迁移表征方法研究[D];西安电子科技大学;2011年
4 赵智军;电迁移引致薄膜导线力电失效的研究[D];清华大学;1996年
5 张元祥;多物理场下金属微互连结构的电迁移失效及数值模拟研究[D];浙江工业大学;2011年
6 张文杰;制造工艺对超深亚微米铝互连线电迁移可靠性的影响[D];中国科学院研究生院(上海微系统与信息技术研究所);2007年
相关硕士学位论文 前10条
1 杨荣华;ULSI铜互连中电迁移可靠性研究及其工艺整合优化[D];复旦大学;2013年
2 赵元虎;无铅焊点电迁移诱致的界面化合物生长及失效研究[D];浙江工业大学;2015年
3 袁娇娇;铜互连线电迁移和锡须生长研究[D];华中科技大学;2014年
4 田爽;互连焊点热电耦合下的电迁移行为研究[D];江苏科技大学;2016年
5 何亮;金属互连电迁移可靠性的新表征参量研究[D];西安电子科技大学;2006年
6 龙博;集成电路超细互连线电迁移可靠性研究[D];哈尔滨工业大学;2010年
7 陈雪凡;考虑多种迁移机制的电迁移仿真算法研究及灵敏度分析[D];浙江工业大学;2009年
8 潘松;电迁移条件下无铅焊点基体溶解的研究[D];大连理工大学;2012年
9 秦敬凯;微互连焊点电迁移失效机理研究[D];哈尔滨工业大学;2012年
10 王浩;电迁移寿命预警电路设计[D];广东工业大学;2012年
,本文编号:2486957
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2486957.html