激光熔覆成形马氏体不锈钢应力演化及调控机制
[Abstract]:The problem of residual stress is one of the most urgent problems to be solved in the manufacture and re-manufacture of large-scale commercial application of laser cladding. The temperature field evolution of the laser cladding process is inevitably accompanied by stress and strain evolution, resulting in a high level of residual stress in the part, the residual stress will affect the service performance and safety of the part, and even the part is scrapped due to cracking and deformation during the manufacturing process. Therefore, it is of very important scientific and practical significance to study the law and mechanism of stress evolution during laser cladding, and to realize the control of residual stress level and distribution. The structure, physical property and stress evolution of the martensitic stainless steel laser cladding process are studied in this paper. The influence rule and mechanism of the martensitic transformation on the evolution of the stress field are described. The method of adjusting the residual stress level and distribution by controlling the phase change is discussed. The high-strength and high-toughness Fe-based alloy powder for laser cladding can be heat-treated, and the powder is used for laser cladding and remanufacturing of large-scale compressor impeller. The physical property evolution of the martensitic stainless steel laser cladding process is studied, and the effect of the solid phase transition on the physical properties is analyzed. By using the MTS810 universal material experimental machine, the DIL801 thermal expansion instrument, the Setaram Setsys Evo synchronous thermal analyzer and the NETZSCH LFA427 laser flash-shooting method, the physical parameters of the martensitic stainless steel at different temperatures and phases are determined, the influence of the solid-state phase change on the parameters is analyzed, the specific parameters include the yield strength, Elastic modulus, plastic modulus, expansion coefficient, specific heat capacity, thermal conductivity, and the like. It is pointed out that the content of the chemical elements in the phase-change temperature and the high-temperature phase is a key factor which influences the size of the phase-change volume. The effect of the austenitizing condition, the cooling condition and the load on the solid phase transition in the laser cladding of the martensitic stainless steel was studied. The effect of different temperature cycle on the phase change dynamics coefficient, phase change point and the microstructure of the phase change is studied by the L78 RITA quenching phase change instrument. The results show that under the experimental conditions, the material at room temperature is the martensite structure, but the different temperature course can lead to the difference of the effective element content in the material. The stability of the austenite phase is different, which further affects the solid-state phase-change point and the phase-change kinetic coefficient. The effect of different applied loads on the martensitic transformation point, phase change dynamics coefficient and phase change plasticity is studied by Gleeble 3500, and when the external load is less than the yield strength, the phase change plasticity can be explained by the Greenwood-Joson mechanism. The effect of phase change plasticity and its effect on the stress evolution is discussed. Under the condition of constant external load of the larger value, the plastic strain of the phase change can far exceed the volume effect strain, and the laser cladding Fe-Cr-Ni-Mo-B-Si steel is a brittle material at room temperature, and the tensile test shows that the phase-change plasticity can make it obtain the elongation of up to 30%. In the process of laser cladding, the effect of phase change plasticity on the stress evolution is significant when the solid-state phase change occurs, but with the process of phase change, the stress level is reduced, and the effect of the phase change plasticity is gradually weakened. In this paper, the temperature field, the stress field and the solid-state phase change processing method for the laser cladding of the martensitic stainless steel are given, and the boundary, the initial conditions and the model parameters are also given. In this paper, the effect of stress on the phase-change dynamics coefficient and the phase-change temperature is considered, the phase-change volume effect and the treatment method of the phase-change plasticity are given, and the phase-change plastic parameters are given according to the Greenwood-Joson phase-change plastic mechanism. The relationship between the elastic modulus, yield strength, plastic modulus, expansion coefficient, specific heat capacity, thermal conductivity and density of the high and low temperature phase is given. The evolution of stress in single-channel and multi-layer multi-channel laser cladding is studied by means of macro-simulation and experimental combination. The evolution of the stress field in many cases, such as the solid phase transition, the solid phase transition, the solid phase transition at different temperature and the low-temperature pre-heating, is considered. The results show that the solid phase transition has a decisive influence on the final residual stress distribution. The solid-state phase change significantly reduces the longitudinal residual tensile stress, and even leads to the occurrence of residual compressive stress; in the case of the complete phase change, the lower the solid phase transition point, the smaller the residual tensile stress, and if the compressive stress is present, the greater the residual compressive stress; and if the material undergoes a solid-state phase change as a whole after the end of the cladding, Then the distribution of the stress field in the cladding and the surrounding area is good, the residual tensile stress is low, in which case, even if the solid-state phase change point is high, the leading role of the solid-state phase change on the residual stress is also significant. A method for characterising the residual tensile stress accumulation level of a laser cladding forming material is presented. -?. In the light of the residual stress problem of the laser cladding and remanufacturing of the large-scale compressor, the factors influencing the martensitic transformation point are discussed, and the heat-treated high-toughness Fe-Cr-Ni-Mo-Mn-Nb alloy powder for laser cladding is developed. Under the appropriate process conditions, the residual stress level in the cladding layer is low. The mechanical property of the deposited material is equivalent to that of the FV520B forging, and the material is used for laser cladding and remanufacturing of the large-scale compressor impeller.
【学位授予单位】:哈尔滨工业大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TG142.71;TG665
【相似文献】
相关期刊论文 前10条
1 马琳;原津萍;张平;赵军军;;多道激光熔覆温度场的有限元数值模拟[J];焊接学报;2007年07期
2 陈列;谢沛霖;;齿面激光熔覆中的防边缘塌陷工艺研究[J];激光技术;2007年05期
3 孙会来;赵方方;林树忠;齐向阳;;激光熔覆研究现状与发展趋势[J];激光杂志;2008年01期
4 陈志坤;刘敏;曾德长;马文有;;激光熔覆裂纹的产生原因及消除方法探究[J];激光杂志;2009年01期
5 郑晖;韩志仁;陈江;王国栋;;采用激光熔覆方法校轴的试验研究[J];东北大学学报(自然科学版);2010年12期
6 朱晨光;孙耀宁;于青;;激光熔覆温度场的数值模拟研究进展[J];热加工工艺;2012年08期
7 周思华;郭艳花;晁明举;刘奎立;;金属表面激光熔覆处理技术的研究[J];周口师范学院学报;2013年05期
8 郭伟,徐庆鸿,田锡唐;激光熔覆的研究发展状况[J];宇航材料工艺;1998年01期
9 郭伟,徐庆鸿,田锡唐;激光熔覆的研究发展状况[J];宇航材料工艺;1998年02期
10 李必文,石世宏,王新林;激光熔覆化工阀门的实验与质量控制[J];热加工工艺;2000年01期
相关会议论文 前10条
1 邓琦林;谢安宁;周广才;;激光熔覆修复技术的基础试验研究[A];2005年中国机械工程学会年会论文集[C];2005年
2 邓琦林;谢安宁;周广才;;激光熔覆修复技术的基础试验研究[A];2005年中国机械工程学会年会第11届全国特种加工学术会议专辑[C];2005年
3 邓琦林;谢安宁;周广才;;激光熔覆修复技术的基础试验研究[A];2005年中国机械工程学会年会论文集第11届全国特种加工学术会议专辑[C];2005年
4 张万红;方亮;赵刚;;液相分散沉降法制备激光熔覆预涂涂层的研究[A];第五届全国表面工程学术会议论文集[C];2004年
5 陈畅源;邓琦林;葛志军;;激光熔覆中的应力研究[A];上海市激光学会2005年学术年会论文集[C];2005年
6 邓琦林;;舰船关键零件的激光熔覆修复[A];第13届全国特种加工学术会议论文集[C];2009年
7 王明娣;刘秀波;郭开波;宋成法;傅戈雁;石世宏;;激光熔覆成形件的应力分析与裂纹控制[A];第14届全国特种加工学术会议论文集[C];2011年
8 王永峰;田欣利;薛春芳;;送粉式激光熔覆能量利用率的分析模型[A];第十届全国特种加工学术会议论文集[C];2003年
9 黄延禄;杨永强;;双方程边界耦合法激光熔覆传质过程数值模拟[A];中西南十省区(市)焊接学会联合会第九届年会论文集[C];2006年
10 刘继常;;激光熔覆工艺理论与试验研究[A];第15届全国特种加工学术会议论文集(下)[C];2013年
相关重要报纸文章 前4条
1 翟扬;激光熔覆硼、钛材料市场海阔天空[N];中国有色金属报;2003年
2 汤兆宏;激光熔覆专利技术修复绥中电厂80万千瓦汽轮机围带铆钉损伤[N];中国电力报;2008年
3 记者 赵静;激光熔覆术成功再造煤矿机械[N];中国煤炭报;2013年
4 本报记者 汤兆宏;成功修复宝钢自备电厂35万千瓦汽轮机缸体[N];中国电力报;2008年
相关博士学位论文 前10条
1 赵彦华;KMN钢压缩机叶片激光熔覆修复及后续加工特性研究[D];山东大学;2015年
2 闫晓玲;激光熔覆再制造零件超声检测数值模拟与实验研究[D];北京理工大学;2015年
3 方金祥;激光熔覆成形马氏体不锈钢应力演化及调控机制[D];哈尔滨工业大学;2016年
4 熊征;激光熔覆强化和修复薄壁型零部件关键技术基础研究[D];华中科技大学;2009年
5 黄凤晓;激光熔覆和熔覆成形镍基合金的组织与性能研究[D];吉林大学;2011年
6 张庆茂;送粉激光熔覆应用基础理论的研究[D];中国科学院长春光学精密机械与物理研究所;2000年
7 张三川;送粉激光熔覆陶瓷掺杂复合涂层技术及涂层成形机理研究[D];郑州大学;2002年
8 李明喜;钴基合金及其纳米复合材料激光熔覆涂层研究[D];东南大学;2004年
9 郑敏;钛合金表面激光熔覆制备生物陶瓷涂层及其生物活性研究[D];兰州理工大学;2008年
10 王明娣;基于光内送粉的激光熔覆快速制造机理与工艺研究[D];南京航空航天大学;2008年
相关硕士学位论文 前10条
1 许波;面向绿色再制造的单道激光熔覆几何特征的研究[D];南京航空航天大学;2011年
2 卢云龙;激光熔覆硅化物三元合金涂层的组织与性能研究[D];上海工程技术大学;2015年
3 付志凯;轮轨材料激光溶覆Fe基合金涂层的微观组织与磨损性能研究[D];西南交通大学;2015年
4 李培源;钢材表面非晶化工艺与性能研究[D];南京理工大学;2015年
5 杭小琳;激光铣削对激光熔覆成形件的整形机理和试验研究[D];苏州大学;2015年
6 梁斌;基于大功率半导体激光熔覆的环模再制造研究[D];燕山大学;2015年
7 相占凤;添加固体润滑剂hBN的钛合金激光熔覆高温耐磨复合涂层研究[D];苏州大学;2015年
8 邓居军;磁化—激光熔覆复合技术强化与修复零部件表面性能的研究[D];江西理工大学;2015年
9 艾铭杰;Cr12MoV模具钢表面激光熔覆层组织及性能研究[D];山东大学;2015年
10 赵文雨;2Cr12MoV表面激光熔覆Stellite 6涂层的组织及性能研究[D];上海交通大学;2015年
,本文编号:2488162
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2488162.html