盐水介质中环境友好型缓蚀剂对铜及铜合金缓蚀机理研究
发布时间:2021-08-28 08:28
铜及铜合金因其优异的机械性能、热学性能以及导电性而被广泛应用于各行各业。加入少量的有机缓蚀剂如半胱氨酸(Cys)可以提升铜及铜合金的耐蚀性能。本文研究了半胱氨酸对铜及铜合金在不同腐蚀介质中的缓蚀机理及腐蚀机制,即多种技术协同使用揭示了表面区的成分变化信息,并建立了半胱氨酸作用下铜及铜合金在相应腐蚀环境中的表面吸附模型。研究结果表明,添加一定剂量(10-2M)的半胱氨酸可以明显降低铜及铜合金的腐蚀速率。本研究按照以下三部分开展:1、本部分研究了半胱氨酸和碘离子对铜在0.5MNa2SO4(pH=2)溶液中腐蚀行为的协同抑制效应。动电位极化曲线结果表明Cys是铜腐蚀过程的混合型抑制剂,其对阴极过程影响较大,Cys会大幅降低腐蚀电流密度并使腐蚀电位负移。同时,碘离子会提升Cys的抑制效率。依据电化学阻抗谱测试结果,本文提出了两种添加剂协同作用下金属/溶液界面的拟合电路模型。多种表面分析技术进一步确定了缓蚀剂分子在金属/溶液界面吸附从而使铜腐蚀过程被抑制。Langmiur温吸附过程可以用来描述铜表面Cys的缓蚀机理。Cys分子活性位点会在铜表面形成一层抑制膜,在此基础上添加碘离子会在铜表面形成预...
【文章来源】:北京科技大学北京市 211工程院校 教育部直属院校
【文章页数】:119 页
【学位级别】:博士
【文章目录】:
Acknowledgement
摘要
Abstract
1 Introduction
2 Copper and Copper Alloy Corrosion
2.1 Basics of Copper Corrosion
2.2 Corrosion Inhibitors
2.2.1 Inorganic Corrosion Inhibitors
2.2.2 Organic Inhibitors
2.3 Factors Affecting Corrosion Inhibition
2.3.1 Type of Substrate (Metal)
2.3.2 Electronic Structure of Inhibitors
2.3.3 Nature of the Corrosive Media
2.4 Corrosion Inhibitors Efficiency Evaluation Methods
2.4.1 Weight Loss Measurement
2.4.2 Potentiodynamic Polarization
2.4.3 Electrochemical Impedance Spectroscopy (EIS)
2.4.4 Scanning Electrochemical Microscopy (SECM)
2.4.5 Surface Analytical Methods
2.5 The Adsorption of Corrosion Inhibitor and its Isotherms
2.5.1 Langmuir Adsorption Isotherm
2.5.2 Freundlich Adsorption Isotherm
2.5.3 Temkin Adsorption Isotherm
2.5.4 Adsorption Energy
2.6 Problems in Current Research
2.7 Main Content of Current Research
3 Synergistic Inhibitive Effect of Cysteine and Iodide Ion on the CorrosionBehavior of Copper in Acidic Sulfate Solution
3.1 Introduction
3.2 Experimental
3.3 Results
3.3.1 Potentiodynamic Polarization Results
3.3.2 EIS Results
3.3.3 SEM Results
3.3.4 XPS Results
3.4 Discussion
3.5 Summary
4 The Protection Role of Cysteine for Cu-5Zn-5Al-1Sn Alloy Corrosion in 3.5wt.% NaCl Solution
4.1 Introduction
4.2 Experimental
4.3 Results
4.3.1 Potentiodynamic Polarization
4.3.2 Electrochemical Impedance Spectroscopy
4.3.3 SEM Analysis
4.3.4 XPS and Auger Results
4.4 Discussion
4.5 Summary
5 Effect of Immersion Time on the Corrosion of Cu-5Zn-5Al-1Sn Alloy andAnti-corrosion Activity of Cysteine in 3.5 wt.% NaCl Solution
5.1 Introduction
5.2 Experimental
5.3 Results
5.3.1 Electrochemical Impedance Spectroscopy
5.3.2 SEM/EDS Results
5.3.3 SERS(Surface Enhanced Raman Spectroscopy)
5.3.4 XPS Results
5.4 Discussion
5.5 Summary
6 General Conclusions
7 Innovation Points
References
Author's Resume and Research Results
Dissertation Data Set
【参考文献】:
期刊论文
[1]In vitro biodegradability of Mg-2Gd-xZn alloys with different Zn contents and solution treatments[J]. Meng Zhang,Wei-Lin Deng,Xiao-Ning Yang,Yong-Kang Wang,Xiang-Yu Zhang,Rui-Qiang Hang,Kun-Kun Deng,Xiao-Bo Huang. Rare Metals. 2019(07)
[2]Corrosion resistance of Mg(OH)2/Mg-Al-layered double hydroxide coatings on magnesium alloy AZ31:influence of hydrolysis degree of silane[J]. Qing-Song Yao,Zhong-Chao Li,Zai-Meng Qiu,Fen Zhang,Xiao-Bo Chen,Dong-Chu Chen,Shao-Kang Guan,Rong-Chang Zeng. Rare Metals. 2019(07)
[3]Corrosion protection properties of vanadium films formed on zinc surfaces[J]. ZOU Zhongli,LI Ning,and LI Deyu Department of Applied Chemistry,School of Chemical Engineering & Technology,Harbin Institute of Technology,Harbin 150001,China. Rare Metals. 2011(02)
本文编号:3368173
【文章来源】:北京科技大学北京市 211工程院校 教育部直属院校
【文章页数】:119 页
【学位级别】:博士
【文章目录】:
Acknowledgement
摘要
Abstract
1 Introduction
2 Copper and Copper Alloy Corrosion
2.1 Basics of Copper Corrosion
2.2 Corrosion Inhibitors
2.2.1 Inorganic Corrosion Inhibitors
2.2.2 Organic Inhibitors
2.3 Factors Affecting Corrosion Inhibition
2.3.1 Type of Substrate (Metal)
2.3.2 Electronic Structure of Inhibitors
2.3.3 Nature of the Corrosive Media
2.4 Corrosion Inhibitors Efficiency Evaluation Methods
2.4.1 Weight Loss Measurement
2.4.2 Potentiodynamic Polarization
2.4.3 Electrochemical Impedance Spectroscopy (EIS)
2.4.4 Scanning Electrochemical Microscopy (SECM)
2.4.5 Surface Analytical Methods
2.5 The Adsorption of Corrosion Inhibitor and its Isotherms
2.5.1 Langmuir Adsorption Isotherm
2.5.2 Freundlich Adsorption Isotherm
2.5.3 Temkin Adsorption Isotherm
2.5.4 Adsorption Energy
2.6 Problems in Current Research
2.7 Main Content of Current Research
3 Synergistic Inhibitive Effect of Cysteine and Iodide Ion on the CorrosionBehavior of Copper in Acidic Sulfate Solution
3.1 Introduction
3.2 Experimental
3.3 Results
3.3.1 Potentiodynamic Polarization Results
3.3.2 EIS Results
3.3.3 SEM Results
3.3.4 XPS Results
3.4 Discussion
3.5 Summary
4 The Protection Role of Cysteine for Cu-5Zn-5Al-1Sn Alloy Corrosion in 3.5wt.% NaCl Solution
4.1 Introduction
4.2 Experimental
4.3 Results
4.3.1 Potentiodynamic Polarization
4.3.2 Electrochemical Impedance Spectroscopy
4.3.3 SEM Analysis
4.3.4 XPS and Auger Results
4.4 Discussion
4.5 Summary
5 Effect of Immersion Time on the Corrosion of Cu-5Zn-5Al-1Sn Alloy andAnti-corrosion Activity of Cysteine in 3.5 wt.% NaCl Solution
5.1 Introduction
5.2 Experimental
5.3 Results
5.3.1 Electrochemical Impedance Spectroscopy
5.3.2 SEM/EDS Results
5.3.3 SERS(Surface Enhanced Raman Spectroscopy)
5.3.4 XPS Results
5.4 Discussion
5.5 Summary
6 General Conclusions
7 Innovation Points
References
Author's Resume and Research Results
Dissertation Data Set
【参考文献】:
期刊论文
[1]In vitro biodegradability of Mg-2Gd-xZn alloys with different Zn contents and solution treatments[J]. Meng Zhang,Wei-Lin Deng,Xiao-Ning Yang,Yong-Kang Wang,Xiang-Yu Zhang,Rui-Qiang Hang,Kun-Kun Deng,Xiao-Bo Huang. Rare Metals. 2019(07)
[2]Corrosion resistance of Mg(OH)2/Mg-Al-layered double hydroxide coatings on magnesium alloy AZ31:influence of hydrolysis degree of silane[J]. Qing-Song Yao,Zhong-Chao Li,Zai-Meng Qiu,Fen Zhang,Xiao-Bo Chen,Dong-Chu Chen,Shao-Kang Guan,Rong-Chang Zeng. Rare Metals. 2019(07)
[3]Corrosion protection properties of vanadium films formed on zinc surfaces[J]. ZOU Zhongli,LI Ning,and LI Deyu Department of Applied Chemistry,School of Chemical Engineering & Technology,Harbin Institute of Technology,Harbin 150001,China. Rare Metals. 2011(02)
本文编号:3368173
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/3368173.html