隧道洞口浅埋段和断裂黏滑段抗震设计计算方法及试验研究
本文关键词:隧道洞口浅埋段和断裂黏滑段抗震设计计算方法及试验研究 出处:《岩石力学与工程学报》2014年03期 论文类型:期刊论文
更多相关文章: 隧道工程 洞口浅埋段 地震动峰值加速度 黏滑断裂 抗震设计 减震技术
【摘要】:以汶川地震隧道震害为研究背景,结合我国公路和铁路隧道抗震设防现行规范及抗震设计的现状,对目前我国隧道抗震设计中亟待解决的问题(山岭隧道洞口浅埋段地震动峰值加速度确定方法、洞口浅埋段纵向和断裂黏滑隧道抗震设计计算方法、断裂黏滑隧道减震技术)进行研究,主要研究成果有:(1)建立基于地形效应的山岭隧道洞口段地震动峰值加速度确定方法。首先,通过对汶川地震隧道洞口段震害基础资料和文献调研资料进行理论分析,确定影响山坡基岩覆盖层地震动峰值加速度传播规律的主要影响因素(山坡地形地貌、覆盖层及地震波参数等),采用单因素分析方法,揭示各主要影响因素对山坡基岩覆盖层地震动峰值加速度传播的影响规律;然后,通过系统分析各主要影响因素对山坡基岩覆盖层地震动峰值加速度传播的影响规律,采用包络线数值分析技术,探明地形效应的影响规律,初步构建基于地形效应的山岭隧道洞口段地震动峰值加速度确定方法。最后;采用三方向、六自由度大型振动台开展动力模型试验研究,选取代表性工况(坡率1∶2)为研究对象,输入标准化后的7,8,9度汶川地震卧龙测站地震波(经相似比转换)进行试验。通过对试验数据的整理分析,对之前研究进行检验并修正,最终建立基于地形效应的山岭隧道洞口段地震动峰值加速度确定方法。(2)建立隧道洞口浅埋段纵向和断裂黏滑隧道抗震设计计算方法。基于反应位移理论的基本原理,结合隧道洞口浅埋段纵向和断裂黏滑隧道结构特性的分析,分别采用弹性地基梁和壳单元模拟隧道洞口浅埋段和断裂黏滑段隧道结构,通过理论推导,建立隧道洞口浅埋段纵向和断裂黏滑隧道抗震设计计算方法。通过动力时程法对其进行检验,理论解均比数值解偏大,幅度小于20%,故隧道洞口浅埋段纵向和断裂黏滑隧道抗震设计计算方法在计算精度、结构设计安全方面符合隧道结构抗震设计的要求,可为隧道洞口浅埋段纵向和断裂黏滑隧道抗震设计提供参考。(3)研究断裂黏滑隧道减震技术。针对断裂黏滑隧道的震害特点,成功试制倾斜正断裂倾向错动试验箱,并对采用减震缝或减震层的6种减震方式(不设抗减震措施;初支不设抗减震措施,二衬设减震缝,间距为9,12 m;初支和二衬交错设减震缝,间距为12 m;减震层厚度为10,20 cm;初支和二衬交错设减震缝,间距为12 m,减震层厚度为10 cm)进行静力黏滑错动模型试验研究。试验结果表明:初支和二衬交错设减震缝(间距12 m)与减震层(厚度10 cm)共同施设工况、初支和二衬交错设减震缝(间距12 m)工况和二衬设减震缝(间距12 m)工况的减震效果相差不大,从施工方便性、经济性考虑,推荐使用二衬设减震缝(间距12 m)的减震方式。
[Abstract]:Based on the earthquake disaster of Wenchuan earthquake tunnel, combined with the current code of seismic fortification of highway and railway tunnel and the present situation of seismic design in China. At present, the problems to be solved in the seismic design of tunnels in our country are as follows: the method of determining the peak acceleration of ground motion at the shallow buried section of the tunnel entrance, the method of seismic design of the longitudinal and fractured viscous slip tunnel at the shallow section of the tunnel. The main research results are as follows: 1) establishing a method for determining the peak acceleration of ground motion at the mouth of a mountain tunnel based on topographic effect. Based on the theoretical analysis of the basic data of earthquake damage and literature investigation in the mouth of Wenchuan earthquake tunnel, the main influencing factors (slope topography and geomorphology) affecting the propagation law of peak acceleration of ground motion in the bedrock overburden of hillside are determined. The single factor analysis method is used to reveal the influence of the main influencing factors on the peak acceleration propagation of the ground motion in the bedrock overburden of the hillside. Then, through the systematic analysis of the influence law of the main factors on the peak acceleration propagation of the ground motion in the hillside bedrock overburden, the influence law of the topographic effect is proved by using the envelope numerical analysis technique. The method of determining the peak acceleration of ground motion at the entrance of mountain tunnel based on topographic effect is preliminarily constructed. The dynamic model test was carried out on a large vibration table with three directions and six degrees of freedom. The representative working condition (slope ratio 1: 2) was selected as the research object, and the standardized 7 / 8 was inputted. The seismic wave of 9 degree Wenchuan earthquake in Wolong station (through similarity ratio conversion) was tested. Through the analysis of the test data, the previous research was checked and corrected. Finally, the method of determining the peak acceleration of ground motion at the entrance of mountain tunnel based on topographic effect is established. The aseismic design method of longitudinal and fractured viscous slip tunnel at shallow buried section of tunnel entrance is established. The basic principle of response displacement theory is presented. Combined with the analysis of longitudinal and fracture viscous slip tunnel structure characteristics of shallow buried section of tunnel entrance, elastic foundation beam and shell element are used to simulate tunnel structure of shallow buried section and fracture viscous slip section of tunnel entrance, respectively, through theoretical derivation. The seismic design and calculation method of longitudinal and fractured viscous slip tunnel in shallow buried section of tunnel is established. The theoretical solution is larger than the numerical solution and the range is less than 20% by dynamic time-history method. Therefore, the calculation method of longitudinal and fracture viscous slip tunnel seismic design in shallow buried section of tunnel orifice meets the requirements of seismic design of tunnel structure in terms of calculation accuracy and structural design safety. It can provide reference for seismic design of longitudinal and faulted viscous slip tunnel in shallow buried section of tunnel entrance) study seismic absorption technology of fault viscous slip tunnel and aim at the characteristics of seismic damage of faulted slippage tunnel. The inclined positive fault inclined staggered test box was successfully developed, and six kinds of shock absorption methods (no anti-shock measures) were applied to the shock absorption joints or layers. The first support is not equipped with anti-seismic measures, and the second liner is equipped with damping joints with a spacing of 9m and 12m; The first branch and the second liner are staggered with shock absorption joints with a spacing of 12 m; The thickness of the damping layer is 10 ~ 20 cm; The first branch and the second liner are staggered with damping joints with a spacing of 12 m. The static viscous slip model test was carried out with the thickness of 10 cm. The experimental results show that the first and second liner staggered damping joints (spacing 12 m) and the damping layer (thickness 10 cm). Common setting conditions. The shock absorption effect of the first and second lining staggered joints (spacing 12 m) and the second liner design (interval 12 m) are not different. The construction convenience and economy are considered. It is recommended to use two-liner damping joints (spacing of 12 m).
【作者单位】: 北方工业大学建筑工程学院;
【分类号】:U452.28
【正文快照】: 隧道洞口浅埋段和断裂黏滑段抗震设计计算方法及试验研究@崔光耀$北方工业大学建筑工程学院!北京100144以汶川地震隧道震害为研究背景,结合我国公路和铁路隧道抗震设防现行规范及抗震设计的现状,对目前我国隧道抗震设计中亟待解决的问题(山岭隧道洞口浅埋段地震动峰值加速度确
【相似文献】
相关期刊论文 前10条
1 陈进;胡涛;;旱莲花隧道洞口浅埋段大变形控制技术[J];公路交通科技(应用技术版);2011年07期
2 郭毅之,金先龙,丁峻宏,曹文宏;沉管隧道地震响应分析的并行计算[J];岩石力学与工程学报;2005年15期
3 杨伟新;;湿陷性黄土隧道洞口浅埋段开挖与支护技术[J];施工技术;2006年11期
4 章伟;;近年日本的隧道施工与抗震设计[J];世界地震工程;2006年02期
5 庄海洋,陈国兴;软弱地基浅埋地铁区间隧洞的地震反应分析[J];岩石力学与工程学报;2005年14期
6 ;隧道工程[J];公路运输文摘;1994年11期
7 牟瑞芳;论隧道工程围岩稳定性及其可控制性[J];铁道学报;1996年04期
8 高万春;试论HARZX钢纤维砼在隧道工程中的应用[J];隧道建设;1996年02期
9 ;隧道工程[J];公路运输文摘;1996年12期
10 ;隧道工程[J];公路运输文摘;2000年03期
相关会议论文 前10条
1 熊建国;;地下隧道抗震设计的一种新途径[A];中国地震学会第八次学术大会论文摘要集[C];2000年
2 王雅卿;陈肖柏;米海珍;;寒区隧道工程冰压力模型试验[A];地层冻结工程技术和应用——中国地层冻结工程40年论文集[C];1995年
3 邝宝山;王文礼;张清秀;;台湾地区隧道工程灾变之案例研究[A];海峡两岸土力学及基础工程地工技术学术研讨会论文集[C];1994年
4 梅志荣;李传富;;铁路客运专线隧道建设中地下水防治有关问题探讨[A];铁路客运专线建设技术交流会论文集[C];2005年
5 王全胜;李建伟;;浅谈隧道涌水灾害应对措施[A];中国土木工程学会第十二届年会暨隧道及地下工程分会第十四届年会论文集[C];2006年
6 X薠;黄Wf,
本文编号:1412887
本文链接:https://www.wllwen.com/kejilunwen/jiaotonggongchenglunwen/1412887.html