基于车路协同的城市交通姿态预警及调控技术研究
发布时间:2018-01-21 22:05
本文关键词: 车路协同 交通姿态预警 拥挤扩散范围估计 拥挤调控 出处:《重庆交通大学》2014年硕士论文 论文类型:学位论文
【摘要】:交通拥挤是城市交通的突出问题,容易诱发交通事故、环境污染以及能耗等诸多社会问题。车路协同技术是当今国际智能交通领域的前沿技术和研究热点,对提高城市交通系统的安全性和通行效率具有十分重要的作用。本文从智能化主动安全的角度,对未来时段城市道路交通姿态进行预测,以期在城市道路发生拥挤之前,通过对交通姿态进行调控,防交通拥挤于未然,从而保障城市道路交通的畅通,提升城市交通出行在市民心中的满意度,增强交通用户在城市出行中的良好体验。 本文基于车路协同的相关技术,通过选取交通流参数,并进行参数预测,根据预测结果确定未来时段城市道路的交通姿态;通过对路段和路网拥挤的时空范围进行估计,提出针对不同交通姿态的具体调控措施。本文的研究内容包括以下五个方面: ①车路协同相关技术 在分析国内外车路协同技术发展现状的基础上,给出了车路协同的内涵;结合车路协同技术的典型应用场景、发展趋势、信息采集、信息交互以及信息处理平台,提出了路侧传感器优化布点模型;提出了建立云服务中心,为基于车路协同系统的交通姿态预警和拥挤的指挥调度创造了条件。 ②交通姿态的划分及判别研究 提出了“交通姿态”,并解析了“交通姿态”的内涵。提出从驾驶自由度的角度,将交通姿态划分为流畅、大流量、阻塞三种类型,并对其进行了分析。基于交通姿态的评价指标,,给出了不同城市道路等级对应不同交通姿态的指标取值量表,建立了基于Vague复合物元的交通姿态判定模型。 ③结合遗传算法的BP神经网络交通参数预测研究 通过对短时交通流预测方法的特点和适用性分析,提出将遗传算法融入到BP神经网络模型,利用遗传算法智能优化BP神经网络模型的权值等参数,建立了结合遗传算法的BP神经网络预测模型,并对预测效果进行了评价分析。 ④路网交通拥挤时空扩散范围估计研究 基于车路协同技术和交通姿态预警,提出针对路段常发性交通拥挤时空扩散范围采用改进后的N曲线进行估计,对路段偶发性交通拥挤根据流量守恒方程和交通拥挤形成过程对时空扩散范围进行估计;在分析路网交通拥挤扩散规律的基础上,估计了路网交通拥挤时空扩散范围。 ⑤车路协同系统交通姿态调控研究 分析了车路协同技术的多通道交通信息采集技术、信息交互技术、信息综合处理技术在交通姿态调控中的应用,提出了对交通姿态的调控思路。 本文应用MATLAB对各算法进行仿真实验,采用基于Vague复合物元模型对交通姿态判别,预测的交通姿态呈现阻塞时,给出了路网交通拥挤时空扩散范围的估计流程图和具体实施步骤,并基于交通姿态调控基本理论,给出了交通姿态具体的调控措施(路口放行方法、路口流向禁限、组织单行交通、交通信号控制)。本文中涉及到的研究内容、研究方法和研究结论是对车路协同技术运用到交通姿态预警和拥挤调控的一个探索,通过对仿真实验结果等的分析,论证了本文所提出算法、模型的正确性和适用性。
[Abstract]:Traffic congestion is a prominent problem of city traffic, likely to cause traffic accidents, many social problems of environmental pollution and energy consumption. The vehicle road coordination technology in the international field of intelligent transportation technology and research hotspot, is very important to improve the efficiency of city traffic safety and traffic rate of the system has a role. This article is based on the intelligent active safety the angle, carries on the forecast to the future time of city road traffic to posture, road congestion occurred in the city before, through the regulation of traffic congestion prevention attitude, preventive measures, in order to protect the city road traffic flow, improve city traffic in the hearts of the public satisfaction, enhance the traffic in the city of good user experience in travel.
The technology of vehicle road coordination based on traffic flow parameters by selecting, and the parameters were determined according to the traffic prediction, attitude next time the city road based on the prediction results; link and network congestion time estimation, put forward specific measures to control the attitude of different traffic. The research content of this paper includes the following five aspects:
Vehicle road coordination related technology
Based on the analysis of cooperative technology development status of domestic and foreign car on the road, gives the connotation of collaborative road vehicles; typical application scenarios, combined with collaborative road vehicle technology development trend, information collection, information exchange and information processing platform, puts forward the roadside optimal sensor placement model; proposed the establishment of cloud service center, to create the conditions for the the traffic warning system based on vehicle road attitude coordination and crowded dispatching.
Study on the division and discrimination of traffic posture
Put forward the "traffic profile", and analyzes the connotation of "traffic attitude". From the freedom of driving, traffic will pose is divided into smooth, large flow, blocking three types, and has carried on the analysis. The evaluation index of traffic based attitude, gives a different city road traffic levels corresponding to different attitude the index scale, a decision model of Vague composite element transportation attitude based on.
Study on traffic parameters prediction of BP neural network based on genetic algorithm
The flow prediction and analysis method of characteristics and applicability of short-term traffic, apply genetic algorithm into the BP neural network model, using BP neural network model of intelligent genetic algorithm to optimize the weights, to establish a prediction model of BP neural network combined with genetic algorithm, and the prediction results were evaluated.
Study on the estimation of space-time diffusion range of traffic congestion in road network
The vehicle road coordination technology and traffic warning based on attitude, proposed road recurrent traffic congestion space-time diffusion using N curve of the improved estimation of road nonrecurring traffic congestion and traffic congestion according to the conservation equation on formation of space-time diffusion range estimation; based on the analysis of traffic congestion propagation rule, estimation the traffic congestion time spread range.
Study on the control of traffic posture in vehicle road coordination system
This paper analyzes the application of multichannel traffic information collection technology, information interaction technology and information comprehensive processing technology in vehicle traffic attitude control, and puts forward a train of thought for traffic attitude control.
The simulation experiment on the algorithm using MATLAB, using the traffic pose discrimination Vague composite element model based on the prediction of traffic pose blocking, given road network traffic congestion space-time diffusion range estimates the flow chart and the specific implementation steps, and based on the basic theory of traffic attitude control, traffic control measures are given specific attitude (intersection clearance method, intersection flow restriction, one-way traffic organization, traffic signal control). This paper involves the research content, research method and conclusion of the road car collaboration technology is applied to traffic congestion warning and attitude regulation an exploration, based on the analysis of the simulation results, this paper demonstrates the the proposed algorithm, the correctness and applicability of the model.
【学位授予单位】:重庆交通大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:U491
【参考文献】
相关期刊论文 前3条
1 王正武,黄中祥;短时交通流预测模型的分析与评价[J];系统工程;2003年06期
2 任江涛,欧晓凌,张毅,胡东成;交通状态模式识别研究[J];公路交通科技;2003年02期
3 陆海亭;张宁;黄卫;夏井新;;短时交通流预测方法研究进展[J];交通运输工程与信息学报;2009年04期
本文编号:1452655
本文链接:https://www.wllwen.com/kejilunwen/jiaotonggongchenglunwen/1452655.html