当前位置:主页 > 科技论文 > 交通工程论文 >

沥青混合料粘弹性质及其对路面力学响应的影响

发布时间:2018-01-22 17:41

  本文关键词: 沥青混合料 粘弹性 模量主曲线 有限元分析 力学响应 出处:《大连理工大学》2014年硕士论文 论文类型:学位论文


【摘要】:随着我国交通事业的发展,以及对路面材料和路面结构研究的逐步深入,沥青与沥青混合料的粘弹性行为模拟及路用性能分析已经成为沥青路面工程的一个重要研究方向。路面结构力学响应分析是解释路面病害机理并进行路面结构设计的核心,而路面材料的力学参数及本构关系则是力学响应分析的基础。本文对沥青混合料材料粘弹性参数模型进行了研究,提出了2种模型理论。利用ABAQUS有限元软件模拟路面在行车荷载下的力学响应,并与现行的弹性理论得到的响应进行对比,从而促进粘弹性理论在路面设计中的应用。 本文首先进行了不同工况下的三轴复数模量试验,从试验中得到不同试验条件下沥青混合料的存储模量、损失模量、动态模量和相位角数据。建立等压存储模量主曲线,分析围压对沥青混合料粘弹性力学响应的影响,进而建立参考温度和参考围压下的三轴存储模量主曲线,构建考虑围压的粘弹性力学参数模型。 其次,通过对原始的HN模型进行改进,得到更符合沥青混合料粘弹性性质的改进HN模型,进而推导出存储模量和损失模量表达式。将三轴复数模量试验得到的存储模量和损失模量试验数据,通过数学方法与推导的公式进行拟合,确定了改进HN模型材料参数和与温度相关的参数,进而建立可以一致的表征材料参数的统一模拟方法。 最后,在有限元软件ABAQUS上建立三维有限元路面模型,进行有限元模拟。分别将路面材料视为粘弹性和弹性材料,对路面施加半正弦波形荷载,进行有限元分析,计算目前路面设计规范中的控制指标:路表弯沉、沥青层和半刚性基层层底弯拉应力。分析比较两种不同材料参数得到的力学响应,同时研究不同温度和不同行车速度下的力学响应的变化规律,并解释这些规律和现象产生的机理,为沥青混凝土路面的设计方法的改进奠定基础。 本研究旨在为沥青混合料粘弹性力学行为的分析提供一个更为完整的思路,促进粘弹性理论在道路设计中的应用;同时可以进一步分析各设计要素对路面结构使用性能的影响,提出延缓病害产生及发展对策,进而可以为路面结构的优化设计提供有效的途径。
[Abstract]:With the development of transportation industry in China, the research on pavement materials and pavement structure has been deepened step by step. The viscoelastic behavior simulation and pavement performance analysis of asphalt and asphalt mixture have become an important research direction of asphalt pavement engineering. The mechanical response analysis of pavement structure is to explain the mechanism of pavement disease and design pavement structure. The core of the plan. The mechanical parameters and constitutive relations of pavement materials are the basis of mechanical response analysis. The viscoelastic parameter model of asphalt mixture materials is studied in this paper. In this paper, two model theories are put forward, and the mechanical response of pavement under driving load is simulated by ABAQUS finite element software, and compared with the response obtained by the current elastic theory. Thus, the application of viscoelastic theory in pavement design is promoted. In this paper, triaxial complex modulus tests under different working conditions are carried out first, and the storage modulus and loss modulus of asphalt mixture under different test conditions are obtained from the test. The main curve of isobaric storage modulus is established, and the influence of confining pressure on viscoelastic response of asphalt mixture is analyzed, and the main curve of triaxial storage modulus under reference temperature and reference confining pressure is established. A viscoelastic parameter model considering confining pressure was established. Secondly, by improving the original HN model, the improved HN model, which is more in line with the viscoelastic properties of asphalt mixture, is obtained. Then the expressions of storage modulus and loss modulus are derived. The experimental data of storage modulus and loss modulus obtained from triaxial complex modulus test are fitted by mathematical method and the derived formula. The material parameters and temperature-related parameters of the improved HN model were determined, and a uniform simulation method for characterizing the material parameters was established. Finally, the 3D finite element pavement model is established on the finite element software ABAQUS, and the pavement material is treated as viscoelastic and elastic material respectively, and the pavement is subjected to semi-sine wave load. Finite element analysis is carried out to calculate the control indexes in the current pavement design code: surface deflection, bending tensile stress of asphalt layer and semi-rigid base layer. The mechanical responses obtained from two different material parameters are analyzed and compared. At the same time, the variation law of mechanical response at different temperature and different driving speed is studied, and the mechanism of these laws and phenomena is explained, which lays a foundation for improving the design method of asphalt concrete pavement. The purpose of this study is to provide a more complete idea for the analysis of viscoelastic behavior of asphalt mixture and to promote the application of viscoelastic theory in road design. At the same time, it can further analyze the influence of each design element on the pavement structure performance, and put forward the countermeasures to delay the occurrence and development of the disease, which can provide an effective way for the optimization design of the pavement structure.
【学位授予单位】:大连理工大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:U414;U416.2

【参考文献】

相关期刊论文 前6条

1 赵延庆;潘友强;黄荣华;;基于动态模量的沥青路面力学响应分析[J];重庆交通大学学报(自然科学版);2008年01期

2 赵延庆;吴剑;文健;;沥青混合料动态模量及其主曲线的确定与分析[J];公路;2006年08期

3 周利;蔡迎春;杨泽涛;;国内外沥青路面设计方法综述[J];公路交通技术;2007年04期

4 郑健龙,田小革,应荣华;沥青混合料热粘弹性本构模型的实验研究[J];长沙理工大学学报(自然科学版);2004年01期

5 赵延庆;王志超;王国忠;谭忆秋;;移动荷载下沥青路面内应力脉冲的持续时间[J];交通运输工程学报;2009年06期

6 帅词俊;段吉安;王炯;;关于黏弹性材料的广义Maxwell模型[J];力学学报;2006年04期



本文编号:1455324

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jiaotonggongchenglunwen/1455324.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户33a78***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com