当前位置:主页 > 科技论文 > 交通工程论文 >

基于SVM动能指标的桥梁时域损伤识别

发布时间:2018-02-09 07:48

  本文关键词: 桥梁 时域损伤识别 SVM 动能指标 出处:《武汉理工大学》2014年硕士论文 论文类型:学位论文


【摘要】:本文通过对桥梁结构时域损伤识别方法的总结分析发现,对于桥梁服役期间车辆荷载对桥梁损伤的影响的研究较少。有鉴于此,本文将直接利用结构动力响应的速度信号,在时域内构建基于SVM动能能量比的损伤指标,进行损伤定位,依据动能能量比指标的变化判断桥梁损伤的程度。并应用该方法到有限元数值模拟试验中,主要研究工作包括: (1)通过阅读大量的国内外文献,对桥梁结构损伤识别的背景和意义以及其发展历史和研究的现状进行总结。重点介绍了主要的优化识别方法和模式识别方法在桥梁时域损伤识别中应用的情况。并对这些方法在桥梁损伤识别应用中存在的问题进行分析。 (2)对基于SVM动能能量指标的时域损伤识别方法进行阐述,包括支持向量机基本理论、基本概念以及优势,最优分类超平面,核函数和分类边界,SVM算法,,动能比损伤识别理论。通过移动荷载作用下梁的动力方程,从而导出桥梁-车辆耦合系统中梁在强迫振动下某时刻的动力响应,最后利用得到的动力响应数据构建动能能量比指标,进行结构损伤程度和位置的识别。 (3)通过数值模拟实验运用上述方法。首先介绍实验方法和过程,给出混凝土损伤模型以及汽车车道荷载实现的技术途径。通过建立简支梁桥有限元模型探讨于SVM动能能量指标的时域损伤识别方法的实现过程,然后为了研究该方法的适用性,拓展该方法应用到一座3跨预应力混凝土连续梁桥按一定比例缩放的有限元模型中,同样按照这种方法进行桥梁损伤位置和损伤程度的识别。 (4)徐葛大桥时域损伤识别。以大跨度斜拉桥——徐葛大桥为研究对象,通过一座实际的徐葛大桥实测的传感器优化布置数据模型为基础,验证了利用动能能量指标的SVM方法在时域损伤识别的可行性,取得较好的效果,对于主塔的损伤识别给出了几种探讨,同时又由于这一方法的研究目前尚处于理论研究中,要使其能真正应用到桥梁结构健康监测,需要进一步研究。
[Abstract]:Based on the summary and analysis of time-domain damage identification methods for bridge structures, it is found that there are few studies on the effects of vehicle loads on bridge damage during bridge service. In view of this, the velocity signals of dynamic responses of structures will be used directly in this paper. The damage index based on SVM kinetic energy ratio is constructed in time domain, and the damage location is carried out. The damage degree of bridge is judged by the change of kinetic energy ratio index. The main research work includes:. By reading a great deal of literature at home and abroad, In this paper, the background and significance of bridge structure damage identification, its development history and research status are summarized, and the application of main optimization and pattern recognition methods in bridge damage identification in time domain is introduced. The problems existing in the application of these methods in bridge damage identification are analyzed. (2) the damage identification method in time domain based on SVM kinetic energy index is expounded, including the basic theory, basic concepts and advantages of support vector machine, the optimal classification hyperplane, kernel function and classification boundary SVM algorithm. The kinetic energy ratio damage identification theory. Through the dynamic equation of the beam under moving load, the dynamic response of the beam under forced vibration at a certain time in the bridge-vehicle coupling system is derived. Finally, the kinetic energy ratio index is constructed by using the dynamic response data to identify the damage degree and location of the structure. 3) the above methods are used in numerical simulation experiments. First, the experimental methods and processes are introduced. The concrete damage model and the technical way to realize the vehicle lane load are given. By establishing the finite element model of the simply supported beam bridge, the realization process of the time domain damage identification method based on the SVM kinetic energy index is discussed, and then the applicability of the method is studied. The method is extended to the finite element model of a 3-span prestressed concrete continuous beam bridge which is scaled to a certain scale. The damage location and damage degree of the bridge are also identified according to this method. (4) time domain damage identification of Xuge Bridge. Taking the long-span cable-stayed bridge-Xuge Bridge as the research object, the data model of optimal sensor arrangement of a practical Xuge Bridge is used as the basis. The feasibility of the SVM method using kinetic energy index in time domain damage identification is verified, and good results are obtained. Several discussions on damage identification of the main tower are given. At the same time, the research of this method is still in the theoretical research at present. Further research is needed to make it applicable to bridge structure health monitoring.
【学位授予单位】:武汉理工大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:U446

【参考文献】

相关期刊论文 前6条

1 王祥建;崔杰;;一种迭代算法在结构物理参数识别中的应用[J];地震工程与工程振动;2008年01期

2 丁幼亮;李爱群;;Structural health monitoring of long-span suspension bridges using wavelet packet analysis[J];Earthquake Engineering and Engineering Vibration;2007年03期

3 胡良红;刘效尧;;基于改进的BP神经网络的钢桁梁桥损伤识别[J];合肥工业大学学报(自然科学版);2006年05期

4 ;Research on seasonal correlation of wavelet packet energy spectrum and temperature of Runyang Suspension Bridge[J];Science in China(Series E:Technological Sciences);2009年06期

5 王艺霖;方从启;;考虑不适定性处理的结构损伤识别新方法[J];西安建筑科技大学学报(自然科学版);2010年02期

6 谢献忠;易伟建;刘锡军;禹见达;;非线性时域识别方程的不适定性与正则化方法研究[J];振动与冲击;2006年05期

相关博士学位论文 前2条

1 艾永明;基于小波神经网络的结构损伤识别方法研究[D];长安大学;2012年

2 阮有兴(Nguyen Huu Hung);基于希尔伯特—黄变换的移动荷载作用下桥梁健康监测方法研究[D];吉林大学;2013年



本文编号:1497438

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jiaotonggongchenglunwen/1497438.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户e6511***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com