当前位置:主页 > 科技论文 > 交通工程论文 >

城市交通控制的云策略研究

发布时间:2018-03-13 19:30

  本文选题:区域控制 切入点:云计算 出处:《重庆交通大学》2014年硕士论文 论文类型:学位论文


【摘要】:城市的扩展和人们生活水平的改善,出行需求急遽增加,城市问题日益严重,污染、拥堵、交通事故时刻威胁着人们的健康和安全。交通控制作为一种合理引导交通流,缓解交通拥堵和交通冲突的方式成为了治理城市交通问题的重要举措。然而,随着城市区域的不断扩大、交通状况日益复杂,现有的交通控制系统在处理交通信息、实施区域协调控制方面弊端性越来越明显。云计算技术以其强大的计算能力、存储能力和简单的编程模式而著称,它实现了信息之间的交互和无边界。因而研究基于云计算的交通控制系统,能极大地提高系统的实时处理、存储等能力,实现路口、区域之间交通信息的交互,也为实施区域甚至大范围的战略交通协调控制奠定了基础。 本文首先对城市交通控制系统的相关知识进行介绍,阐述了区域交通协调控制系统的工作原理和结构,并对现有的交通控制系统进行分析,指出其在交通控制中难以实现路口、区域之间的协调控制,,实时性较差的问题。通过分析研究云计算及其关键技术,创造性地提出将云计算技术与交通控制相结合,构建城市交通控制云策略系统。本文从四个方面对城市交通控制云计算平台进行设计:分析交通控制云计算平台的组成部门和使用模式;提出使用虚拟机软件进行虚拟化来搭建交通控制云平台环境;研究交通控制云平台的节点部署模型,采用计算节点计算力模型实现节点间的负载均衡;通过SOA的服务结构,设计针对交通控制的服务目录和服务接口。在研究交通控制云平台的拓扑结构和体系结构的基础上,构建了包含云计算资源管理子系统、区域协调控制子系统和交通信息查询子系统的交通控制云策略系统,并对区域协调控制子系统的关键技术进行了分析。 文章最后尝试对交通控制系统的实现进行初步验证,从系统的硬件、软件和虚拟机三方面研究,搭建云计算平台,对各子系统功能进行分析和研究。最后从系统的平均响应时间和平均能耗对系统进行了测试,可知云计算平台在区域控制范围越大、控制节点越多的情况下,性能越强大。
[Abstract]:With the expansion of the city and the improvement of people's living standard, the travel demand increases sharply, the urban problems become more and more serious, pollution, congestion and traffic accidents threaten people's health and safety all the time. Traffic control is a reasonable way to guide the traffic flow. The ways to alleviate traffic jams and traffic conflicts have become important measures to deal with urban traffic problems. However, with the continuous expansion of urban areas and the increasing complexity of traffic conditions, existing traffic control systems are dealing with traffic information. The drawbacks of implementing regional coordination control are becoming increasingly apparent. Cloud computing technology is known for its powerful computing power, storage capacity and simple programming model. Therefore, the study of cloud computing based traffic control system can greatly improve the real-time processing, storage and other capabilities of the system, and realize the interaction of traffic information between intersections and regions. Also for the implementation of regional and even a wide range of strategic traffic coordination control laid the foundation. This paper first introduces the related knowledge of the urban traffic control system, expounds the working principle and structure of the regional traffic coordination control system, and analyzes the existing traffic control system. This paper points out that it is difficult to realize intersections in traffic control, coordinated control between regions, and poor real-time. By analyzing cloud computing and its key technologies, it creatively proposes to combine cloud computing technology with traffic control. This paper designs the cloud computing platform of urban traffic control from four aspects: analyzing the components and usage patterns of cloud computing platform for traffic control; The virtual machine software is used to build the traffic control cloud platform environment; the node deployment model of the traffic control cloud platform is studied; the load balance between nodes is realized by computing node computing power model; and the service structure of SOA is adopted. The service directory and service interface for traffic control are designed. Based on the study of the topology and architecture of the traffic control cloud platform, a cloud computing resource management subsystem is constructed. The traffic control cloud strategy system of the regional coordination control subsystem and the traffic information query subsystem is analyzed, and the key technologies of the regional coordination control subsystem are analyzed. Finally, this paper tries to verify the realization of the traffic control system, and builds the cloud computing platform from the hardware, software and virtual machine of the system. Finally, we test the system from the average response time and average energy consumption of the system. The results show that the larger the control range of cloud computing platform is, the stronger the performance of cloud computing platform is when there are more control nodes.
【学位授予单位】:重庆交通大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:U495

【参考文献】

相关期刊论文 前8条

1 杨洋;;云计算的现状及发展趋势[J];电脑开发与应用;2012年02期

2 孙健;贾晓菁;;Google云计算平台的技术架构及对其成本的影响研究[J];电信科学;2010年01期

3 倪琴;许丽;;云计算技术在智能交通系统中的应用研究[J];交通与运输(学术版);2012年01期

4 柳炳祥;李海林;杨丽彬;;云决策分析方法[J];控制与决策;2009年06期

5 马庆禄;斯海林;郭建伟;;物联网环境下城市交通区域联动的云控制策略[J];计算机应用研究;2013年09期

6 杨经华;;高校图书馆信息服务应用云计算的SWOT分析[J];情报探索;2011年03期

7 田永青,杜国宁,李志,朱仲英;基于云理论神经网络决策树的生成算法[J];上海交通大学学报;2003年S2期

8 吕丽萍;张治斌;;基于BizTalk的数字化校园数据交换平台[J];现代计算机;2006年10期

相关博士学位论文 前1条

1 方雷;基于云计算的土地资源服务高效处理平台关键技术探索与研究[D];浙江大学;2011年



本文编号:1607844

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jiaotonggongchenglunwen/1607844.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户ac21d***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com