铁路拱桥上无缝线路纵向梁轨相互作用与地震反应分析研究
本文选题:铁路 切入点:拱桥 出处:《西南交通大学》2014年博士论文
【摘要】:铁路桥上铺设无缝线路提高了线路运营平顺性、减少了养护维修工作量,但存在的桥梁与轨道相互作用(简称“梁轨相互作用”)问题的研究是铁路设计中的重要课题,需对线路中所用到的各种桥型上无缝线路铺设技术进行研究。本文在国内外已有研究基础上,主要对铁路拱桥上无缝线路梁轨相互作用相关问题做了研究,具体研究内容如下:1.铁路三类拱桥上无缝线路纵向力计算简化平面模型的建立基于梁轨相互作用原理,分析了铁路拱桥上铺设无缝线路后桥梁结构与线路轨道相互作用特点,分别建立了上承式、中承式及下承式拱桥上无缝线路纵向力计算的简化平面模型,给出模型中拱肋、立柱墩等关键构件参数取值计算方法;采用了一种新的钢轨挠曲力计算方法并进行了验证。2.铁路拱桥上无缝线路纵向力计算程序编制及验证三类拱桥线桥墩一体化模型的建立采用统一流程,采用FORTRAN语言和ANSYS软件相结合的方法编制了铁路拱桥上无缝线路纵向力计算通用程序(ABCWR),该程序可完成拱桥和普通桥上无缝线路伸缩、挠曲、制动及断轨工况分析计算;分别以铁路三跨简支梁和上承式拱桥为例,通过与成熟计算程序BCWR和建立线路-桥梁空间耦合模型计算结果的对比,验证了本文编制ABCWR计算程序的通用性和计算结果的可信性。3.三类拱桥上无缝线路纵向梁轨相互作用影响因素研究利用ABCWR计算程序,解决了三类拱桥上无缝线路钢轨伸缩力、挠曲力、制动力及断缝的计算问题。研究了拱肋、立柱墩或吊杆的温差及截面刚度对三类拱桥钢轨伸缩力的影响,给出了中承式和下承式拱桥钢轨伸缩力计算简化方法;对三类拱桥钢轨挠曲力和制动力计算最不利工况进行了总结,建议重视上承式拱桥挠曲工况的分析;对比了公式法和梁轨相互作用法计算钢轨断缝值的差异,对三类拱桥均建议采用梁轨相互作用法分析断轨工况;分析了桥跨及支座布置形式对上承式拱桥上无缝线路受力变形的影响,建议拱桥上宜设置三联连续梁,将外侧两联连续梁的固定支座设置在交界墩上,并需考虑设置一定数量的速度锁定器来分配制动工况下的墩台受力。4.铁路拱桥上无缝线路动力计算有限元模型建立及轨道约束对动力特性影响研究建立拱桥上无缝线路动力计算线路-桥梁空间耦合有限元模型,模型中线路纵向阻力采用理想弹塑性形式,以上承式拱桥为例,研究了二期恒载、钢轨约束作用对拱桥结构动力特性的影响。分析结果可知,二期恒载降低了结构整体自振频率;由于线路纵向阻力约束作用限制了拱肋变形,立柱墩纵向刚度及弯曲自振频率比不考虑轨道约束作用的要大。5.拱桥上无缝线路纵向地震反应影响因素分析利用建立的线路-桥梁动力计算空间耦合有限元模型,采用非线性时程逐步积分分析方法,对二期恒载、地震波频谱特性、结构阻尼比、竖向地震作用、小阻力扣件铺设、拱肋温差作用以及拱上桥跨布置形式等因素对上承式拱桥上无缝线路地震反应规律进行了详细分析。研究表明上承式拱桥上采用三跨连续梁的方案并未增大地震作用下的无缝线路受力,结合伸缩、挠曲等常规分析工况的研究结论,进一步说明此方案要优于拱上采用简支梁方案。6.室内有砟轨道桥上无缝线路纵向地震反应振动台模型试验设计实施了室内有砟轨道桥上无缝线路纵向地震反应振动台模型试验,验证理论计算中线路纵向阻力采用理想弹塑性本构形式的合理性。由试验结果可知,模型试验钢轨的纵向约束作用提高了试验梁体的低阶纵向自振频率,这与理论分析结论一致;采用理想弹塑性阻力形式计算得到的钢轨应力比试验结果要大,但会低估实际中梁体的位移;基于测试结果对理论模型线路阻力参数修正后的计算结果与试验结果吻合较好;建议理论分析中可采用理想弹塑性阻力形式的假定,钢轨地震力计算结果偏安全,能为工程所接受。
[Abstract]:The railway bridge CWR on improving line operating comfort, reduce maintenance workload, but the interaction between bridge and track ("girderrailinteraction") problem is an important problem in the design of railway bridge, seamless line used in the line laying technology research. In this paper, based on existing research, the main problems of CWR on Railway arch bridge rail interaction is studied. The main research contents are as follows: the establishment of plane simplified calculation model based on the principle of interaction between girder and rail longitudinal force of CWR 1. railway three arch bridge, analysis of CWR on Railway arch bridge after the bridge structure and track interaction characteristics were established on the bearing type, bearing type and simplified plane model for longitudinal forces of CWR on Calculation of arch bridge, to die Type of arch rib, calculation method of key component parameters such as pier column value; using a new rail deflection force calculation method was presented and the longitudinal force of CWR on Railway arch bridge calculation to verify the.2. compilation and verification procedures of three types of arch bridge and pier integration model by using the unified process method, using FORTRAN language and ANSYS software the combination of the longitudinal forces of CWR on Railway arch bridge calculation program (ABCWR), the program can be completed expansion of CWR and ordinary bridge arch bridge deflection analysis and calculation of braking and broken rail conditions; respectively by the iron road three span girder and deck arch bridge as an example, by comparing with the mature BCWR program the calculation results and establish bridge spatial coupling model line, seamless line and verify the ABCWR program compiled general and calculation results of the credibility of.3. class three arch longitudinal beam The interaction between the rail and the influencing factors of the use of ABCWR program to solve the three kind of arch bridge on the jointless rail expansion force, bending force, braking force and calculation of broken seam. Of arch rib, temperature difference and cross-section column pier or boom stiffness on the three arch bridge rail expansion force influence is given in the deck and arch bridge rail expansion force of three kinds of simplified calculation method; arch bridge rail deflection force and braking force calculation of the most unfavorable conditions are summarized, analysis demonstrate the importance of the arch bridge deflection mode; comparison of formula method and girderrailinteraction method to calculate the difference of rail broken gap value. The three arch bridge analysis of broken rail conditions using girderrailinteraction method; analysis of the bridge span and the bearing arrangement form of deck type arch bridge on the influence of CWR deformation, suggestions on arch bridge should set the triple continuous beam, the outer connecting two The fixed bearing beam is arranged in the continued juncture pier, and the need to consider a certain amount of speed lock to distribute the braking condition of pier CWR dynamic stress calculation of.4. railway arch bridge finite element model is established and the track constraints on the dynamic effect of computing coupled finite element model of track bridge dynamic joint space line arch bridge, longitudinal resistance model in the ideal elastic-plastic form above the arch bridge as an example, studied two period dead load effect of rail bound on the dynamic characteristics of bridge structure. The analysis results, two dead load reduces the overall structure of the self vibration frequency; due to the longitudinal resistance constraint limits the deformation of arch rib, column pier longitudinal rigidity and bending vibration frequency than that without considering the factors of.5. arch bridge CWR on longitudinal seismic response analysis of the effect of track restraint construction Finite element spatial coupling model calculation of bridge power line up, using the nonlinear time history analysis method of two step integral, constant load, seismic wave spectrum, damping ratio, vertical earthquake, small resistance fastener laying, arch rib arch bridge and temperature effect on the layout and other factors are analyzed in detail on deck arch bridge of CWR on seismic response law. The results show that the arch bridge with three span continuous beams did not increase scheme CWR under earthquake force, combined with the expansion, conclusion conditions for routine analysis of deflection, further shows that this scheme is superior to the arch using the simple scheme of.6. indoor ballast the track of CWR on Bridge longitudinal seismic response of the shaking table model test design and implementation of indoor ballastless track CWR on bridge longitudinal seismic response of shaking table model tests verify the theoretical calculation of line The road longitudinal resistance by using ideal elastic-plastic constitutive form of rationality. The test results show that the longitudinal restraint model test of rail improves the low order test beam body longitudinal vibration frequency, the theoretical analysis and conclusion; the ideal elastic-plastic rail resistance form the calculated stress ratio test results to, but will underestimate the beam displacement; based on the test results of the theoretical calculation results of line resistance model corrected parameters agree well with the experimental results; the idealized elastic-plastic resistance forms are suggested in the theoretical analysis, the steel rail base results are safer, can be accepted by engineering.
【学位授予单位】:西南交通大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:U213.9;U442.55
【参考文献】
相关期刊论文 前10条
1 刘衍峰;高亮;冯雅薇;;桥上无缝道岔受力与变形的有限元分析[J];北京交通大学学报;2006年01期
2 全顺喜;王平;陈嵘;;钢桁梁梁端横向伸缩对轨道几何形位的影响[J];重庆交通大学学报(自然科学版);2010年06期
3 罗学海,朱葳,谢逢萱;铁路实体桥墩动力分析的简化方法[J];地震工程与工程振动;1982年03期
4 李立峰;黄佳梅;吴文朋;王连华;;基于IDA的高墩大跨桥梁抗震性能评估[J];地震工程与工程振动;2012年01期
5 郭月峰;;钢管混凝土提篮拱桥内倾角对内力分布影响的研究[J];福建建筑;2007年11期
6 马坤全,陈文艳;轨道交通无缝线路对高架桥抗震性能的影响[J];城市轨道交通研究;2002年01期
7 陈宝春,孙潮,陈友杰;桥梁转体施工方法在我国的应用与发展[J];公路交通科技;2001年02期
8 高亮;杨文茂;曲村;蔡小培;;高铁长大桥梁CRTSⅠ型板式无砟轨道无缝线路的动力学特性[J];北京交通大学学报;2013年01期
9 蒋金洲,张煅;南非象河桥上无缝线路钢轨伸缩力和温度力[J];国外桥梁;1998年04期
10 张连振;黄侨;;基于优化设计理论的桥梁有限元模型修正[J];哈尔滨工业大学学报;2008年02期
相关博士学位论文 前5条
1 阴存欣;铁路桥梁纵向附加力的静动力非线性分析与仿真研究[D];铁道部科学研究院;2000年
2 徐庆元;高速铁路桥上无缝线路纵向附加力三维有限元静力与动力分析研究[D];中南大学;2005年
3 杨荣山;桥上无缝道岔纵向力计算理论与试验研究[D];西南交通大学;2008年
4 任娟娟;桥上无缝道岔区纵连式无砟轨道受力特性与结构优化研究[D];西南交通大学;2009年
5 闫斌;高速铁路中小跨度桥梁与轨道相互作用研究[D];中南大学;2013年
,本文编号:1653081
本文链接:https://www.wllwen.com/kejilunwen/jiaotonggongchenglunwen/1653081.html