当前位置:主页 > 科技论文 > 交通工程论文 >

长周期倒计时信号控制对排队消散特性的影响

发布时间:2018-03-29 10:35

  本文选题:城市交通 切入点:信号控制 出处:《城市交通》2016年06期


【摘要】:长周期和倒计时是中国相对于发达国家城市道路交叉口信号控制方案的两个独有特征。基于实证数据分析两类信号控制特征对车辆排队消散特性的影响。共观测天津市两处典型的长周期倒计时信号控制交叉口的7条直行车道。实证数据表明,中国城市道路交叉口长周期倒计时信号控制下的排队消散过程大致可分为3个阶段:启动阶段、稳定阶段和上升阶段。通过有序样品聚类的方法确定3个阶段的分割点。这与HCM 2010等经典理论假设的排队消散特性明显不同,因此分析传统通行能力估计算法HCM 2010的适用性,并提出简单线性法、抛物线法和两段线法3种通行能力估计方法以减少传统方法估计中的误差。通过比较发现,抛物线与两段线拟合方法对通行能力的估计较为准确,均方根误差(RMSE)均小于30 pcu·h~(-1)。
[Abstract]:Long period and countdown are two unique characteristics of signal control schemes in China compared with those in developed countries. Based on empirical data, the effects of two kinds of signal control characteristics on vehicle queuing dissipation characteristics are analyzed. Two typical long-period countdown signal control intersections in Tianjin have 7 straight lanes. Under the control of long-period countdown signal, the queuing and dissipating process of urban road intersection in China can be divided into three stages: start-up stage. In the stable and ascending stages, the segmentation points of the three stages are determined by the method of ordered sample clustering. This is obviously different from the queuing dissipation characteristics of the classical theoretical assumptions such as HCM 2010. Therefore, the applicability of the traditional capacity estimation algorithm HCM 2010 is analyzed. In order to reduce the error in the traditional method, three methods of capacity estimation are proposed, which are simple linear method, parabola method and two-segment line method. Through comparison, it is found that the fitting method of parabola and two-segment line is more accurate in estimating the capacity. The root mean square error (RMSE) is less than 30 pcu / h ~ (-1).
【作者单位】: 天津市市政工程设计研究院;
【分类号】:U491.23

【相似文献】

相关期刊论文 前1条

1 王君杰,范立础;规范反应谱长周期部分修正方法的探讨[J];土木工程学报;1998年06期

相关硕士学位论文 前1条

1 王志潼;高墩大跨度连续刚构桥在长周期地震动作用下的响应分析[D];北京交通大学;2016年



本文编号:1680759

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jiaotonggongchenglunwen/1680759.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户d1d23***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com