信号交叉口行人群集通行仿真研究
发布时间:2018-04-03 03:15
本文选题:信号交叉口 切入点:行人群集 出处:《北京工业大学》2014年硕士论文
【摘要】:与普通路段的行人交通不同,信号交叉口的行人交通由于受到通行时间的限制及通行环境的影响,会出现特有的“群集”现象。通过分析信号交叉口行人群集的交通特性,掌握行人群集通行的一般规律并通过仿真软件模拟再现群集的运动,可以为行人群集交通控制与管理提供一种新方法。 本文以北京市西大望路、武圣路等路段的典型交叉口的过街行人群集为研究对象,利用视频分析软件获得大量过街行人的坐标、速度及加速度数据,并基于实测数据对信号交叉口的行人个体、个体与个体间、行人群集的交通特性进行了分析。 在分析总结国内外行人交通运动模型的的基础上,选取社会力模型作为行人个体运动行为模型的基础模型,针对信号交叉口的环境特殊性对传统社会力模型进行优化,利用非线性回归分析对优化后的模型参数进行标定,并利用实测数据对最终模型的精确度进行分析。 利用相关分析的方法,分别对相邻时刻的群集中心坐标、相邻时刻的面积参数值以及群集中心速度与群集距离的相关关系进行分析;根据分析结果,,利用多种回归方程建立了群集中心位置、群集面积及群集中心速度的预测模型,并利用实际数据与预测数据的误差检验预测模型的精确度。 针对预测模型得出的参数预测值与相应参数实际值的差距,采用力学分析的方法,建立了群集中心、群集面积及群集速度的控制模型,得到的模型可以及时调整行人的运动,使整个行人群集呈现协同性和聚合性。 以建立的行人个体交通模型和行人群集交通模型作为核心,利用C#语言开发信号交叉口行人群集通行仿真软件,软件可以动态的模拟信号交叉口处行人以群集状态通行的过程,并输出行人坐标、速度等数据,通过输出值与实际值的误差对比进一步验证模型的精确性。开发的软件可以对行人群集的交通组织方案和行人信号配时方案进行模拟分析和评价,是有效组织行人交通、加强行人过街安全的新手段。
[Abstract]:Different from the pedestrian traffic in ordinary road sections, pedestrian traffic at signalized intersections will appear special "clustering" phenomenon due to the limitation of traffic time and the influence of traffic environment.By analyzing the traffic characteristics of pedestrian clusters at signalized intersections, mastering the general rules of pedestrian traffic and simulating the movement of pedestrian clusters through simulation software, a new method for traffic control and management of pedestrian clusters can be provided.In this paper, the pedestrian clusters at typical intersections of Xidawang Road and Wusheng Road in Beijing are studied. A large number of coordinates, velocities and accelerations of pedestrians are obtained by using video analysis software.Based on the measured data, the traffic characteristics of pedestrian individuals, individuals and pedestrian clusters at signalized intersections are analyzed.On the basis of analyzing and summarizing the pedestrian traffic movement model at home and abroad, the social force model is selected as the basic model of pedestrian individual movement behavior model, and the traditional social force model is optimized according to the environmental particularity of signalized intersection.The parameters of the optimized model are calibrated by nonlinear regression analysis, and the accuracy of the final model is analyzed by the measured data.By using the method of correlation analysis, the relationship between the cluster center coordinates of adjacent time, the area parameter value of adjacent time, and the cluster center velocity and the cluster distance is analyzed, and according to the analysis results, the relationship between the cluster center velocity and the cluster distance is analyzed.The prediction models of cluster center location, cluster area and cluster center velocity are established by using multiple regression equations, and the accuracy of the prediction model is verified by the error between the actual data and the prediction data.In view of the difference between the predicted values and the actual values of the corresponding parameters, the control model of cluster center, cluster area and cluster velocity is established by using the method of mechanical analysis. The model can adjust the movement of pedestrians in time.Make the whole pedestrian cluster present synergy and aggregation.With the established pedestrian traffic model and pedestrian traffic model as the core, using C # language to develop pedestrian traffic simulation software at signalized intersection, the software can dynamically simulate the process of pedestrian passing in cluster state at signalized intersection.The accuracy of the model is further verified by comparing the error between the output value and the actual value.The developed software can be used to simulate and evaluate the traffic organization scheme and pedestrian signal timing scheme of pedestrian clusters. It is a new method to effectively organize pedestrian traffic and enhance pedestrian crossing safety.
【学位授予单位】:北京工业大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:U491
【参考文献】
相关期刊论文 前1条
1 李得伟;鲁放;;乘客集散仿真技术在城市轨道交通中的应用[J];都市快轨交通;2008年06期
本文编号:1703374
本文链接:https://www.wllwen.com/kejilunwen/jiaotonggongchenglunwen/1703374.html