风荷载作用下城市轨道交通车辆—轨道动力特性及车辆速度限值研究
发布时间:2018-04-22 04:04
本文选题:有限元 + 刚柔耦合 ; 参考:《北京交通大学》2014年硕士论文
【摘要】:摘要:随着城市轨道交通迅速发展,极端天气(强风)会给在高架线路上城市轨道列车的运行安全提出巨大的挑战。由于线路超高、曲线半径、轨道不平顺等因素,使强风作用下列车在高架桥上的动力性能恶化,严重影响列车安全运行,甚至会造成脱轨、倾覆等事故。为提高强风作用下列车在高架线路上安全运行性,本文分析了复杂情况下的车-线-桥动力学性能,为计算强风作用下城市轨道列车安全运行提供了一种有效分析方法。主要工作如下: (1)在总结和分析国内外对车辆-轨道-桥梁动力特性及强风作用下列车速度限值的研究基础上,针对强风作用下在高架桥曲线段、直线段的车辆运行时遇到的实际问题,提出了以有限元法和刚柔耦合法为基础,分析计算风荷载作用下的车-线-桥的动力学响应并依此制定出适合城市轨道列车安全运行的速度限值为目标的整个研究思路。 (2)考虑到目前的主流有限元软件及多体动力学软件无法单独进行风荷载作用下的车-线-桥的动力特性数值模拟,本文提出采用多体动力学软件SIMPACK和有限元软件ANSYS相结合的方式,实现了刚柔联合仿真,解决了曲线超高、曲率以及缓和曲线等因素给车-线-桥耦合系统带来的数值积分困难。 (3)根据所建立的模型,逐一分析了曲线半径、车速、稳态风等因素对轮轨动力学响应、梁体力学指标的影响。在不考虑风力对桥梁的直接作用时,梁体的动力学指标良好,相比风速、车速,桥梁动力响应对于曲线半径变化较不敏感。 (4)在稳态风时程激励的基础上,结合试验提出了瞬时风作用下的时程激励方式,结果表明:某一风速等级下瞬时风速对轮轨产生的动力学响应与比它风速等级高一级的稳态风速下的产生的动力学响应近似相等。 (5)利用力的分解法分析了在不同风速角下的列车动力性能,结果表明:列车在受垂直于车速方向的风荷载时,其动力响应值不是列车在此风速下的最大动力响应值。8级风速下,车速为60km/h时,风速角度为-75°时,横向力为18.99kN,垂向力为77.33kN,脱轨系数0.30,相比在90°下,增加了横向力增长了5.8%,垂向力增加了0.2%,脱轨系数增加了0.7%。 (6)根据轮轨动力学参数以及桥梁动力学指标,综合考虑实际的运行情况,确定了强风条件下的列车限速值:12级风速下,停止运营;11级风速下,直线段限速25km/h,曲线段限速20km/h;10级风速下直线段限速55km/h,最小曲线半径限速35km/h;9级风速下直线段限速60km/h,最小曲线半径限速50m/h等。
[Abstract]:Absrtact: with the rapid development of urban rail transit, extreme weather (strong wind) will pose a great challenge to the safety of urban rail trains on elevated lines. Due to the factors such as ultra high line, curve radius and track irregularity, the dynamic performance of the train on the viaduct is deteriorated under the action of strong wind, which seriously affects the safe operation of the train and even causes accidents such as derailment and capsizing. In order to improve the safe operation of trains on elevated lines under the action of strong wind, this paper analyzes the dynamic performance of vehicle-line-bridge under complex conditions, and provides an effective analysis method for calculating the safe operation of urban rail trains under the action of strong winds. The main tasks are as follows: 1) on the basis of summing up and analyzing the dynamic characteristics of vehicle-track bridge and train speed limit under the action of strong wind at home and abroad, aiming at the practical problems of vehicle running in viaduct curve section and straight section under the action of strong wind, Based on the finite element method and rigid-flexible coupling method, the dynamic response of the vehicle-line-bridge under wind load is analyzed and calculated, and the whole research idea is put forward based on which the speed limit suitable for the safe operation of the urban rail train is worked out. (2) considering that the current mainstream finite element software and multi-body dynamics software can not be used separately to simulate the dynamic characteristics of vehicle-line-bridge under wind load, In this paper, the method of combining multi-body dynamics software SIMPACK and finite element software ANSYS is proposed to realize the rigid-flexible joint simulation, which solves the difficulty of numerical integration of the vehicle-line-bridge coupling system caused by the factors such as the curve superelevation, curvature and detente curve. 3) according to the established model, the influences of curve radius, speed and steady state wind on the dynamic response of wheel / rail and the mechanical index of beam are analyzed one by one. When the direct effect of wind on the bridge is not considered, the dynamic index of the beam body is good. Compared with the wind speed and speed, the dynamic response of the bridge is not sensitive to the curve radius change. 4) on the basis of steady wind time history excitation and combined with experiments, the time history excitation mode under instantaneous wind action is proposed. The results show that the dynamic response of instantaneous wind speed to wheel-rail is approximately equal to that of steady wind speed which is higher than its wind speed grade. The results show that when the train is subjected to the wind load perpendicular to the speed of speed, the dynamic response value is not the maximum dynamic response value of the train at this wind speed. When the speed is 60km/h, the transverse force is 18.99kN, the vertical force is 77.33kN, and the derailment coefficient is 0.30. compared with 90 掳, the lateral force increases by 5.8, the vertical force increases by 0.2 and the derailment coefficient increases by 0.7. On the basis of wheel / rail dynamic parameters and bridge dynamics indexes, considering the actual operation situation, the train speed limit value of grade 12 under strong wind condition is determined, and the wind speed of 11 grade wind speed of stop operation is determined under the condition of strong wind. The speed limit of linear segment is 25 km / h, the speed limit of curve segment is 20 km / h, the limit speed of straight segment is 55 km / h under wind speed of 10 grades, the limit of minimum radius of curve is 35 km / h, the limit speed of linear segment is 60 km / h, the limit speed of curve radius is 60 km / h, and so on.
【学位授予单位】:北京交通大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:U270.11;U441.3
【参考文献】
相关期刊论文 前10条
1 单德山,李乔;车桥耦合振动分析的数值方法[J];重庆交通学院学报;1999年03期
2 谭永朝,葛玉梅 ,奚绍中 ,郑翰献 ,俞菊虎 ,邢艳;钱江四桥主跨车桥耦合振动分析[J];城市轨道交通研究;2003年03期
3 史建港;陈艳艳;任福田;;修正四阶段法在城市交通抗灾规划中的应用[J];公路交通科技;2006年05期
4 韩艳;胡揭玄;蔡春声;李仁发;;横风作用下考虑车辆运动的车桥系统气动特性的数值模拟研究[J];工程力学;2013年02期
5 李永乐,廖海黎,强士中;考虑桥塔风效应的斜拉桥时域抖振分析[J];空气动力学学报;2005年02期
6 李永乐;强士中;廖海黎;;风速场模型对风—车—桥系统耦合振动特性影响研究[J];空气动力学学报;2006年01期
7 李毅雄;;香港地铁气象灾害防范技术[J];中国安全生产科学技术;2007年02期
8 武建军;史筱红;;横向风场作用下磁悬浮车体运动稳定性数值研究[J];兰州大学学报(自然科学版);2009年02期
9 王璐雷,徐宇工,毛军;强侧风对高速列车运行安全性的影响及其控制[J];内燃机车;2004年10期
10 姚远;张红军;罗,
本文编号:1785502
本文链接:https://www.wllwen.com/kejilunwen/jiaotonggongchenglunwen/1785502.html