大节段钢箱梁线形控制关键技术研究
发布时间:2018-05-17 01:03
本文选题:大节段钢箱梁 + 合理施工方案 ; 参考:《华南理工大学》2014年硕士论文
【摘要】:与混凝土梁桥相比,钢箱梁桥具有跨越能力大、适合工业化制造、便于运输、安装速度快和修复及更换容易等特点,在现代桥梁设计和建造中得到了广泛的应用。为了满足桥梁受力简单、施工方便、跨越能力大等要求,连续钢箱梁桥在大跨度梁式桥里得到了越来越广泛的应用。尤其在沿海、跨海工程中,选择大节段吊装施工更好地发挥钢箱梁工厂化制造,海上施工速度快的特点。 也正因为采用了大节段施工方法,桥梁线形基本上在制造阶段已经设定并焊接好,在桥位现场所能调整的范围非常有限,故有必要进行全过程的线形控制,确保最终成桥线形满足目标要求。本文以在建的港珠澳大桥非通航孔桥为工程背景,针对施工控制前期有限元建模计算及后期现场施工控制工作过程中遇到的实际问题进行以下几方面的研究: (1)连续钢箱梁桥合理施工方案的确定。 基于无应力状态法,对无应力线形进行了推导,分析了简支梁以及连续梁施工过程与最终状态的关系。提出了基于某一目标状态的无应力线形的观点。在比较分析以整跨为一大节段和带悬臂的大节段的划分方法优缺点的基础上,得出带悬臂的大节段划分方法更利于施工和更好满足结构受力状态的结论。结合工程实例,比较分析了基于一次成桥目标状态和基于施工过程成桥目标状态的两种施工方案。 (2)钢箱梁无应力制造线形及下料长度计算。 基于施工全过程控制思想,对钢箱梁无应力制造线形及下料尺寸进行研究。利用现有有限元施工模型的计算结果,通过计算出钢箱梁梁段间无应力夹角和大节段接缝处的相对关系的方法间接得到无应力制造线形及其他相关尺寸。为同类型桥梁的制造线形和下料长度的计算提供了参考。 (3)制造和吊装过程线形控制分析。 以港珠澳大桥非通航孔桥为工程背景,,介绍了其钢箱梁的制造和吊装方法,并分析了在制造和吊装过程中可能出现的引起线形误差的因素。在敏感性分析的基础上,确定了主要影响因素,为后续的线形控制提供了理论参考。
[Abstract]:Compared with concrete girder bridge, steel box girder bridge is widely used in modern bridge design and construction due to its advantages of large span capacity, suitable for industrial manufacture, convenient transportation, quick installation and easy repair and replacement. In order to meet the requirements of simple force, convenient construction and large span capacity, continuous steel box girder bridges are more and more widely used in long-span girder bridges. Especially in coastal and sea crossing projects, large section hoisting construction is chosen to better play the characteristics of factory manufacture of steel box girders and fast construction speed at sea. It is also because of the large section construction method that the bridge alignment has basically been set and welded in the manufacturing stage, and the range of adjustment at the bridge site is very limited, so it is necessary to carry out the whole process of alignment control. Ensure that the final bridge alignment meets the target requirements. Based on the non-navigable bridge of Hong Kong-Zhuhai-Macao Bridge under construction, the following aspects are studied in this paper: (1) the finite element modeling and calculation in the early stage of construction control and the practical problems encountered in the process of construction control in the later stage are studied in the following aspects: 1) determination of reasonable construction scheme of continuous steel box girder bridge. Based on the stress-free state method, the stress-free linear shape is derived, and the relationship between the construction process and the final state of simply supported beam and continuous beam is analyzed. The viewpoint of stress-free linear form based on a certain target state is presented. On the basis of comparing and analyzing the advantages and disadvantages of dividing the whole span into a large segment and a large segment with a cantilever, it is concluded that the large segment partition method with a cantilever is more conducive to construction and better meets the stress state of the structure. Combined with engineering examples, two construction schemes are compared and analyzed, which are based on the target state of the primary bridge and the target state of the bridge based on the construction process. Steel box girder non-stress manufacturing line and material length calculation. Based on the idea of whole construction process control, the line shape and blanking size of steel box girder without stress are studied. Based on the calculation results of the existing finite element construction model, the non-stress angle between the steel box girder sections and the relative relationship between the joints of the large segment are indirectly obtained by calculating the non-stress manufacturing lines and other relevant dimensions. It provides a reference for the calculation of manufacturing line and blanking length of the same type bridge. Line control analysis of manufacturing and hoisting process. Taking the non-navigable orifice bridge of HongKong-Zhuhai-Macao Bridge as the engineering background, this paper introduces the manufacturing and hoisting methods of the steel box girder, and analyzes the factors that may cause the linear error in the process of manufacture and hoisting. On the basis of sensitivity analysis, the main influencing factors are determined, which provides a theoretical reference for the following linear control.
【学位授予单位】:华南理工大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:U448.213
【参考文献】
相关期刊论文 前10条
1 刘斯琴;何登甲;吴锦伟;;海心沙2~#桥水上钢桥钢箱梁分段分块吊装施工[J];广东土木与建筑;2011年12期
2 张喜刚;苏通大桥总体设计[J];公路;2004年07期
3 宋晖;孟凡超;;舟山西堠门大桥关键技术介绍[J];公路;2009年05期
4 李建慧;李爱群;郭彤;;斜拉桥不确定性参数随机分析研究[J];公路交通科技;2008年11期
5 闫成军;;跨铁路钢箱梁整体吊装施工技术研究[J];科技创新与应用;2012年12期
6 秦顺全;斜拉桥安装无应力状态控制法[J];桥梁建设;2003年02期
7 周建林;吴冲;;大跨度斜拉桥扁平钢箱梁悬臂拼装截面变形分析[J];桥梁建设;2006年01期
8 杜官民;;香港后海湾跨海大桥预制混凝土节段梁短线台座法预制原理[J];桥梁建设;2006年S1期
9 秦顺全;;无应力状态控制法斜拉桥安装计算的应用[J];桥梁建设;2008年02期
10 张希黔,韦亮,张宏胜;城市钢箱梁结构立交桥的特点及安装技术[J];施工技术;2004年09期
本文编号:1899195
本文链接:https://www.wllwen.com/kejilunwen/jiaotonggongchenglunwen/1899195.html