双线平行盾构隧道施工引起的三维土体变形研究
本文选题:双线平行盾构隧道 + 土体变形 ; 参考:《岩土力学》2014年09期
【摘要】:基于双线水平平行盾构施工中土体损失引起的土体变形二维解析解,建立土体变形三维解析解。取不同的纵向位置作为变量,建立土体损失率沿纵向的变化方程;考虑先行隧道施工对后行隧道的影响,分别计算两条盾构隧道施工引起的土体变形,叠加得到双线平行盾构施工引起的土体总变形。其方法能够计算土体深层沉降和水平位移,较精确地反映土体三维变形。算例分析结果表明:预测值与实测值较为吻合;土体沉降随着离开挖面距离的增加而不断增大,最终在x=-40 m左右时趋于稳定;随着先行隧道与后行隧道开挖距离的接近,最大土体总沉降量逐渐增大;土体沉降会随着深度z的增大而略微增加,但沉降槽宽度将略微减小;随着两条隧道轴线水平距离L的增大,最大土体沉降逐渐减小,沉降曲线形状慢慢由V型转变成W型,不再符合正态分布规律。
[Abstract]:Based on the two-dimensional analytical solution of soil deformation caused by soil loss during the construction of double-line horizontal and parallel shield tunneling, the three-dimensional analytical solution of soil deformation is established. Taking different longitudinal positions as variables, the variation equation of soil loss rate along longitudinal direction is established, and the deformation of soil caused by the construction of two shield tunnels is calculated by considering the influence of tunnel construction on the later tunnel. The total deformation of soil caused by double line parallel shield construction was obtained by superposition. The method can calculate the deep settlement and horizontal displacement of soil and accurately reflect the three dimensional deformation of soil. The results of example analysis show that the predicted value is in good agreement with the measured value, the soil settlement increases with the increase of the distance from the excavated surface, and finally tends to be stable at about x-40 m, and with the approaching of the excavation distance between the first tunnel and the rear tunnel, the settlement of the soil increases with the increase of the distance from the excavated surface to the excavated surface. The maximum total settlement of soil gradually increased, the settlement of soil increased slightly with the depth z, but the width of settlement trough decreased slightly, with the increase of horizontal distance L of the two tunnels axis, the maximum settlement of soil gradually decreased. The shape of settlement curve is gradually changed from V type to W type, which no longer accords with the normal distribution law.
【作者单位】: 浙江大学城市学院土木工程系;
【分类号】:U451
【相似文献】
相关期刊论文 前10条
1 资谊;陈强;章荣军;郑俊杰;;复合地层中隧道开挖面支护压力对地层变形的影响[J];华中科技大学学报(城市科学版);2010年04期
2 黄锦雄;;强夯法加固复杂地基土的试验研究[J];华南港工;2005年04期
3 刘金;陈长征;赵慧;;不同隧道断面结构处的地表振动分析[J];噪声与振动控制;2009年05期
4 刘晋南;蒋鑫;邱延峻;;斜坡软弱地基路堤工程特性的数值模拟[J];中国铁道科学;2011年02期
5 陈峗,梁志刚,陈云敏;TDR技术在监测岩体和土体变形中的应用[J];中南公路工程;2004年04期
6 施建勇,张静,佘才高,樊有维;隧道施工引起土体变形的半解析分析[J];河海大学学报(自然科学版);2002年06期
7 杨智刚;;强夯桥台背路基土体变形的室内模型试验研究[J];路基工程;2009年04期
8 李方楠;胡蒙达;吴怀娜;马磊;;地铁运行对隧道周围土体的长期影响[J];低温建筑技术;2010年06期
9 唐益群;栾长青;张曦;王建秀;杨坪;;地铁振动荷载作用下隧道土体变形数值模拟[J];地下空间与工程学报;2008年01期
10 程海涛;柳学花;;涵—土性状离心模型试验研究[J];路基工程;2008年02期
相关会议论文 前10条
1 殷建华;;管道与土相互作用的离心机和数值模拟[A];第一届海峡两岸隧道与地下工程学术与技术研讨会论文集(上册)[C];1999年
2 魏新江;魏纲;姚宁;;暗挖隧道与邻近结构物相互作用研究现状及展望[A];第一届中国水利水电岩土力学与工程学术讨论会论文集(下册)[C];2006年
3 孙宇坤;吴为义;;城市隧道掘进对邻近环境影响的保护分析[A];第16届全国结构工程学术会议论文集(第Ⅱ册)[C];2007年
4 杨烨e,
本文编号:1939568
本文链接:https://www.wllwen.com/kejilunwen/jiaotonggongchenglunwen/1939568.html