基于模糊视觉技术的车辆监控系统设计
发布时间:2018-06-03 23:28
本文选题:模糊视觉 + 大型车辆 ; 参考:《计算机测量与控制》2014年09期
【摘要】:当前的车辆监测系统进行大型车辆监控的过程中,容易受到环境不可控因素的影响,造成监控过程形式单一,对车辆细节识别准确度较低;提出基于模糊视觉技术的大型车辆监控系统设计方法;系统由硬件和软件这两部分构成;硬件部分以FPGA为控制核心进行了设计,重点对交通图像的采集模块、缓存模块、摄像机方案、监视器方案和嵌入式处理器方案进行阐述;软件部分首先对图像进行预处理消除图像中的噪声.引入车辆细节模糊视觉特征识别模型表示外界随机因素的干扰,根据模型的输出结果计算车辆细节特征的像素密度,能够对车辆的细节状态进行准确识别;实验结果表明,利用设计的监控系统对大型车辆进行监控,能够有效提高监控的准确率,具有较强的稳定性。
[Abstract]:The current vehicle monitoring system is easy to be affected by uncontrollable environmental factors in the process of large-scale vehicle monitoring, resulting in a single form of monitoring process and low accuracy of vehicle detail recognition. The design method of large vehicle monitoring system based on fuzzy vision technology is put forward. The system is composed of hardware and software. The hardware part is designed with FPGA as the control core, especially the traffic image acquisition module and buffer module. The camera scheme, monitor scheme and embedded processor scheme are described. Firstly, the image is preprocessed to eliminate the noise in the image. The fuzzy visual feature recognition model of vehicle details is introduced to represent the interference of external random factors. The pixel density of vehicle detail features can be calculated according to the output results of the model, which can accurately identify the details of vehicles. The experimental results show that, Using the designed monitoring system to monitor large vehicles can effectively improve the accuracy of monitoring and has strong stability.
【作者单位】: 青岛酒店管理职业技术学院;
【分类号】:TP391.41;U495
【参考文献】
相关期刊论文 前7条
1 覃永新;陈文辉;章帆;;实时视频数据采集的FPGA实现[J];电子技术应用;2009年09期
2 朱立新;王平安;夏德深;;基于梯度场均衡化的图像对比度增强[J];计算机辅助设计与图形学学报;2007年12期
3 王莹;南敬昌;郭凌云;;基于视频图像的车牌定位预处理算法[J];计算机测量与控制;2011年10期
4 潘兵,谢惠民,续伯钦,戴福隆;数字图像相关中的亚像素位移定位算法进展[J];力学进展;2005年03期
5 李U,
本文编号:1974719
本文链接:https://www.wllwen.com/kejilunwen/jiaotonggongchenglunwen/1974719.html