重庆歌乐山轻轨隧道建设诱发山体变形与应力数值模拟
发布时间:2018-06-26 07:24
本文选题:三维地质模型 + 隧道 ; 参考:《重庆交通大学》2014年硕士论文
【摘要】:近年来随着交通行业的飞速发展,从而出现了更多的高速公路隧道,高速铁路隧道与城市交通隧道,而现代隧道的特点是断面大,里程长,并且由于里程长的原因,还不得不布置在不良地质构造当中,如果不引起重视,在施工过程中扰动这些不良地质体会引起非常大的次生灾害,不但影响了施工,造成隧道洞身的破坏,而且还产生了次生地质灾害,造成经济损失人员伤亡的同时还破坏了自然环境。本人在搜集重庆轨道交通一号线中梁山隧道资料的基础上,借助三维有限元软件Midas/GTS建立了三维地质模型,对隧道穿越背斜构造的情况下进行了模拟分析。 1)利用三维有限元软件Midas/GTS等比建立了歌乐山三维地质模型,建立了观音峡背斜地质构造几何模型,模拟了歌乐山在自重应力条件下的初始地应力状态,并分析了歌乐山观音峡背斜剖面初始地应力特征、不同地表地形处的山体地应力特征。 2)重庆轨道交通一号线中梁山隧道穿越了观音峡背斜,在歌乐山三维地质模型的基础上,模拟了中梁山隧道开挖,在关键区域,,如穿越背斜的核部、翼部等地质构造敏感部位就隧道洞身的变形量大小、山体的位移场分布趋势、山体的应力场的重分布情况做出了总结;以及隧道开挖对山体扰动区域、对山体的损伤区域、以及隧道开挖引起的地表变形等方面做出了结果分析,得出了相关规律。 3)在歌乐山三维地质模型的基础上,对其施加不同地质构造与不同岩性继续模拟隧道开挖,目的是去除地质条件和不同岩性两个参考变量之间的相互干扰,在同一地质构造中考察不同岩性的影响,以及在同一岩性中考察不同地质构造的影响。对分析结果进行横向量化对比分析,在不同地质构造情况下,比较洞身变形最大区域分布特征、主应力集中最大分布带、剪应力集中分布带,塑性区分布区域以及山体地表变形量地表空间分布,总结不同地质构造条件下的变化规律;在不同岩性情况下,比较洞身最大变形量大小、隧道开挖对山体损伤区域范围大小,总结不同岩性条件下的变化规律。 4)在以上计算结果中,对结果数据均进行量化分析,找出最为敏感的数值变化范围。
[Abstract]:In recent years, with the rapid development of traffic industry, more highway tunnels, high-speed railway tunnels and urban traffic tunnels have emerged, while modern tunnels are characterized by large cross-section, long mileage, and because of the reasons of mileage. They also have to be placed in bad geological structures. If they are not taken seriously and disturbed in the course of construction, these undesirable geological experiences will cause very large secondary disasters, which will not only affect the construction, but also cause damage to the tunnel body. It also produces secondary geological disasters, resulting in economic losses and casualties, but also damage to the natural environment. On the basis of collecting the data of Zhongliangshan Tunnel of Chongqing Rail Transit Line 1, I have established a three-dimensional geological model with the help of the 3D finite element software Midas / GTS. The simulation analysis of tunnel crossing anticline structure is carried out. 1) by using the 3D finite element software Midas / GTS ratio, the three-dimensional geological model of Geleshan is established, and the geological structure geometry model of Guanyanxia anticline is established. The initial in-situ stress state of Gele Mountain under the condition of gravity stress is simulated, and the initial geostress characteristics of the Guanyin Gorge anticline section are analyzed. 2) the Zhongliangshan Tunnel of Chongqing Rail Transit Line 1 has passed through the Guanyin Gorge anticline. Based on the three-dimensional geological model of Geleshan, the excavation of Zhongliangshan Tunnel has been simulated in the key area. For example, through the core of anticline, the sensitive part of geological structure, such as wing, etc., summarizes the magnitude of deformation of tunnel body, the distribution trend of displacement field of mountain body, the redistribution of stress field of mountain body, and the disturbed area of mountain body by tunnel excavation. The damage area of mountain body and the surface deformation caused by tunnel excavation are analyzed, and the related laws are obtained. 3) based on the 3D geological model of Geleshan, Different geological structures and different lithology are applied to continue simulating tunnel excavation in order to remove the mutual interference between two reference variables of geological conditions and different lithology, and to investigate the influence of different lithology in the same geological structure. And to investigate the influence of different geological structures in the same lithology. The results of the analysis are compared in transverse quantitative analysis. Under different geological structures, the maximum regional distribution characteristics of deformation, the maximum distribution zone of principal stress concentration, the distribution zone of shear stress concentration, and the distribution zone of shear stress concentration are compared. The distribution area of plastic zone and the surface space distribution of mountain surface deformation quantity, sum up the change law under different geological structure condition, compare the maximum deformation of tunnel body, the damage area of tunnel excavation to mountain body under different lithology condition, The variation law under different lithologic conditions is summarized. 4) in the above calculation results, the most sensitive range of numerical variation is found by quantitative analysis of the result data.
【学位授予单位】:重庆交通大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:P642.2;U452.1
【参考文献】
相关期刊论文 前8条
1 朱胜利;王文斌;刘维宁;路美丽;;地铁工程施工的风险管理[J];都市快轨交通;2008年01期
2 朱传云,赖世骧,卢文波,朱焕春;爆破振动对岩体结构面影响的室内试验研究[J];工程爆破;1996年04期
3 方建勤,李昱,颜荣贵;常见地下工程开挖灾害的预测与防治[J];矿冶工程;2005年02期
4 贺胜利;;象山隧道坍方处理技术[J];西部探矿工程;2012年02期
5 赵明阶,刘绪华,敖建华,王彪;隧道顶部岩溶对围岩稳定性影响的数值分析[J];岩土力学;2003年03期
6 李兴高;王霆;;刚性管线纵向应变计算及安全评价[J];岩土力学;2008年12期
7 陈秋南;赵明华;周国华;黄胜平;周应麟;;复杂层状岩层隧道塌方原因分析与加固后信息化施工技术[J];岩土力学;2009年03期
8 刘春;易俊;姜德义;任松;;基于灰色关联分析理论的岩爆烈度预测研究[J];中国矿业;2007年12期
本文编号:2069645
本文链接:https://www.wllwen.com/kejilunwen/jiaotonggongchenglunwen/2069645.html