当前位置:主页 > 科技论文 > 交通工程论文 >

基于复杂网络的城市交通流仿真

发布时间:2018-12-11 13:36
【摘要】:随着我国社会经济的发展,人民生活水平的提高,机动车保有量日益增加,交通拥堵已成为我国各大城市必须面临的一大难题。城市道路交通网络是一个复杂的巨系统,复杂网络作为研究复杂系统的重要工具之一,受到了国内外学者的广泛关注。国内外学者对交通系统的复杂性做了大量的研究,但这些研究大多建立在静态平衡配流理论的基础上,很少考虑交通流在交通网络上的动态演化过程,几乎没有考虑出行者在出行过程中的动态路径选择行为,这与现实不符。因此,本论文基于动态用户平衡理论,建立了GS-CTM动态交通分配仿真模型,该模型能够较好地仿真交通流的动态特性,用户的动态路径选择行为,同时也能仿真网络上交通拥堵的产生、传播及消散等交通流特性,以此分析网络结构对交通流运行产生的影响。 本论文结合复杂网络理论和GS-CTM动态交通分配仿真模型,对不同网络结构下的交通流进行了仿真研究,主要研究工作包括以下几个方面: (1)将Green shields模型里的速密关系引入到CTM模型中,建立了GS-CTM动态交通分配仿真模型,同时对路段阻抗和路径选择等关键问题进行了研究,并给出了GS-CTM模型的求解算法。 (2)对不同网络结构下的城市交通流运行特性进行了仿真研究。运用复杂网络理论编写MATLAB程序,随机生成了三种不同的网络结构:规则网络、小世界网络和随机网络。以GS-CTM动态交通分配仿真模型为基础,开发了GS-CTM动态交通分配仿真平台,比较了网络平均行程速度、网络平均车流密度、网络总阻抗、网络总延误等各项交通流指标,发现在三种网络结构中,随机网络交通流运行效率最高,是一种较好的网络结构,其次是小世界网络,最差的是规则网络。 (3)对不同网络结构下的城市交通拥堵演化进行了仿真研究。分别从全局和局部角度分析了不同网络下的交通拥堵演化特性,全局角度主要分析了不同网络结构交通拥堵瓶颈的产生、规模、消散等特征,局部角度主要分析了网络中部分路段对周边交通及网络产生的影响。通过仿真分析发现:随机网络能承受较大的交通需求,抵抗拥堵能力较强,网络性能较好。
[Abstract]:With the development of our country's social economy, the improvement of people's living standard and the increasing number of motor vehicles, traffic jam has become a big problem that every big city of our country must face. The urban road traffic network is a complex giant system. As one of the important tools to study the complex system, the complex network has been widely concerned by scholars at home and abroad. Scholars at home and abroad have done a lot of research on the complexity of traffic system, but most of these studies are based on static equilibrium flow theory, and seldom consider the dynamic evolution process of traffic flow in traffic network. The dynamic path selection behavior of travelers in the travel process is hardly considered, which is inconsistent with reality. Therefore, based on the theory of dynamic user balance, the GS-CTM dynamic traffic assignment simulation model is established in this paper. The model can simulate the dynamic characteristics of traffic flow and the dynamic path selection behavior of users. At the same time, it can also simulate the traffic flow characteristics such as the generation, propagation and dissipation of traffic congestion on the network, so as to analyze the influence of network structure on the traffic flow operation. Based on the complex network theory and GS-CTM dynamic traffic assignment simulation model, the traffic flow under different network structure is simulated in this paper. The main research work includes the following aspects: (1) the rapid-density relation in Green shields model is introduced into CTM model, and the simulation model of GS-CTM dynamic traffic assignment is established. At the same time, the key problems such as section impedance and path selection are studied, and the algorithm of solving GS-CTM model is given. (2) the operation characteristics of urban traffic flow under different network structure are simulated. Using complex network theory to write MATLAB program, three different network structures are randomly generated: regular network, small world network and random network. Based on the GS-CTM dynamic traffic assignment simulation model, the GS-CTM dynamic traffic assignment simulation platform is developed. The traffic flow indexes such as average travel speed, average vehicle flow density, total network impedance and total network delay are compared. It is found that among the three networks, stochastic network has the highest efficiency of traffic flow, which is a better network structure, followed by a small world network, and the worst one is a regular network. (3) the evolution of urban traffic congestion under different network structure is simulated. The evolution characteristics of traffic congestion in different networks are analyzed from the global and local perspectives respectively. The global perspective mainly analyzes the characteristics of traffic congestion bottlenecks in different network structures, such as the generation, scale, dissipation, and so on. The influence of some sections of the network on the surrounding traffic and the network is mainly analyzed from the local point of view. Through simulation analysis, it is found that the stochastic network can withstand large traffic demand, has strong ability to resist congestion, and has better network performance.
【学位授予单位】:西南交通大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:U491.112

【参考文献】

相关期刊论文 前10条

1 杨齐;;对交通仿真模型软件开发及应用问题的思考[J];城市交通;2006年03期

2 刘炳全;黄崇超;;一种新的路径生成式Logit交通分配算法[J];系统工程;2006年02期

3 谈晓洁,周晶,盛昭瀚;城市交通拥挤特征及疏导决策分析[J];管理工程学报;2003年01期

4 刁阳;隽志才;倪安宁;;中观交通流建模与系统仿真研究综述[J];计算机应用研究;2009年07期

5 吴璐;;广州轨道交通网络的复杂网络特性研究[J];交通标准化;2011年21期

6 黄玮;沈峰;杨晓光;;基于细胞传输模型的交通流仿真特征及适用性研究[J];交通与计算机;2008年01期

7 连爱萍;高自友;龙建成;;基于路段元胞传输模型的动态用户最优配流问题[J];自动化学报;2007年08期

8 种鹏云;帅斌;陈钢铁;;恐怖袭击下危险品运输网络级联失效抗毁性建模与仿真[J];计算机应用研究;2013年01期

9 孙俊,商蕾,高孝洪;交通仿真模型及其应用研究[J];交通科技;2004年04期

10 赵月;;网络拓扑结构对交通流量分布特性的影响分析[J];铁道运输与经济;2008年10期

相关博士学位论文 前3条

1 赵晖;一般输运网络演化模型及动力学特征的相关研究[D];北京交通大学;2007年

2 吴建军;城市交通网络拓扑结构复杂性研究[D];北京交通大学;2008年

3 龙建成;城市道路交通拥堵传播规律及消散控制策略研究[D];北京交通大学;2009年



本文编号:2372641

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jiaotonggongchenglunwen/2372641.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户629f8***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com