钢桥面环氧沥青铺装粘结层性能与结构力学分析
[Abstract]:With the sustained and rapid development of economy, long-span highway steel bridges are more and more widely used in the field of transportation in China. Steel deck pavement plays an important role in ensuring good driving environment. At present, steel deck pavement is one of the key and difficult points in the research of long span highway steel bridge. The orthotropic steel deck has the advantages of high strength, fatigue resistance and high temperature resistance due to its structural characteristics and complex deformation, so it is difficult for asphalt concrete pavement to meet the requirements of pavement performance. It has been gradually applied to steel bridge deck pavement in China, and some of the epoxy asphalt concrete pavement still have problems such as cracking, delamination, bulging and so on. The bond layer of steel bridge deck pavement is the key link of pavement structure system, but there is no clear and unified testing and evaluation method of epoxy asphalt pavement bond layer at present, and the microstructure of bond interface of epoxy asphalt pavement is also lack of in-depth study. A lot of research work has been done on the analysis of steel bridge deck epoxy asphalt pavement structure, but there is still no research on the element size, load loading mode and the influence of transverse slope in finite element method. In this paper, the following research work is carried out on mechanical calculation and bonding layer of pavement structure. (1) orthogonal experimental design for mechanical properties of epoxy resin adhesive layer is carried out. The sensitivity of bond properties to three factors (bond thickness, loading rate, temperature) was evaluated by tensile shear and drawing tests. The relationship between bond shear and drawing strength was established by correlation analysis. To evaluate the influencing factors of bond layer performance test. (2) to determine the influence of gradation on bond ability between coarse and fine grade paving layer and steel plate, and to quantify the contact state between different grade and steel plate by digital image processing. The relationship between the ratio of coarse aggregate near the interface and the bond strength of interface is established. Through microscopic image observation, the microcosmic distribution of epoxy resin in interface contact area and mixture is compared and analyzed. (3) the finite element numerical model is established in combination with Humen Bridge pavement project, and the effect of mesh size on the calculation results is compared. The reasonable mesh size of the model element is determined, and the modulus of the pavement layer, the overload rate and the loading mode of the single and double wheels are calculated and analyzed at the same time. The influence of pavement cracking on the mechanical response of pavement is analyzed. (4) the influence of lateral slope on the mechanical response difference of wheel track on both sides of pavement is calculated and analyzed in the numerical model, based on the phenomenon of disease difference of wheel track on both sides of pavement of Humen Bridge. The influence of transverse slope on the mechanical response of steel deck pavement is analyzed. The mechanical properties of the bond layer are most sensitive to the temperature factor in the test and evaluation of the bond layer. The shear and tensile strength of the bond layer show a quadratic curve relationship. In the contact state between coarse and fine grade pavement and steel plate, more coarse aggregates are directly in contact with steel plate in coarse gradation. The experimental results show that the bond strength of coarse gradation interface is lower than that of fine grade. The stress on the pavement of Humen Bridge under different parameters is calculated by finite element numerical simulation. The results show that the transverse slope of Humen Bridge has a significant effect on the mechanical response of the pavement.
【学位授予单位】:华南理工大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:U443.33
【相似文献】
相关期刊论文 前10条
1 刘淑娟;;沥青混凝土桥面铺装粘结层受力分析及施工控制要点[J];黑龙江交通科技;2012年10期
2 ;复合管和芯轴由于高湿度造成的粘结层剥离[J];包装与食品机械;1988年02期
3 ;纤维管和芯轴由于水浸入造成的粘结层剥离[J];包装与食品机械;1988年02期
4 Sofia Teixeira de Freitas;Henk Kolstein;Frans Bijlaard;;正交异性钢桥面板改造的组合粘结系统[J];钢结构;2010年03期
5 顾兴宇;王文达;;水泥混凝土桥面粘结层抗剪性能要求及简化计算[J];交通运输工程学报;2010年02期
6 徐伟,李智,张肖宁;混凝土桥面铺装粘结层体系力学性能试验研究[J];哈尔滨建筑大学学报;2002年04期
7 李宏志;;桥面防水粘结层性能试验分析[J];长沙交通学院学报;2007年01期
8 刘发;江臣;;新型桥面防水粘结层界面强度评价方法研究[J];现代交通技术;2013年01期
9 潘贵;刘细军;;沥青路面粘结层抗剪试验研究[J];山西建筑;2008年33期
10 华夏;李大鹏;;超薄罩面粘结层材料试验研究[J];交通标准化;2011年08期
相关会议论文 前2条
1 怀丽;刘洋;;环氧沥青粘结层洒布施工控制[A];公路交通与建设论坛(2009)[C];2010年
2 王珍万;;环氧沥青铺装防腐与粘结层施工质量控制探析[A];公路交通与建设论坛(2011)[C];2003年
相关重要报纸文章 前1条
1 心雨;阻透材料新突破[N];中国包装报;2003年
相关博士学位论文 前1条
1 曾蔚;同步碎石桥面铺装粘结层层间应力分析与应用研究[D];长安大学;2008年
相关硕士学位论文 前10条
1 邱琳;热障涂层粘结层成分优化设计研究[D];上海交通大学;2014年
2 李水金;钢桥面环氧沥青铺装粘结层性能与结构力学分析[D];华南理工大学;2016年
3 张东鲁;桥面防水粘结层材料性能评价与应用研究[D];华南理工大学;2016年
4 柏园;桥面铺装粘结层的研究[D];长安大学;2005年
5 周源;沥青混凝土桥面铺装粘结层界面结构和性能研究[D];华南理工大学;2013年
6 吴远启;粘结层成分与热障涂层界面电子结构的关系[D];北京化工大学;2004年
7 刘越;强流脉冲电子束辐照NiCrAlY粘结层表面改性[D];大连理工大学;2012年
8 苏俊杰;基于有限元法的外贴FRP加固结构分析研究[D];浙江大学;2014年
9 王浩;全钢型板式防屈曲支撑无粘结层的有限元分析与支撑设计方法研究[D];广州大学;2013年
10 李航;普通机烧矿消除炉缸粘结模拟实验研究[D];昆明理工大学;2010年
,本文编号:2398610
本文链接:https://www.wllwen.com/kejilunwen/jiaotonggongchenglunwen/2398610.html