大跨悬索桥非平稳抖振位移响应时域分析
[Abstract]:In recent decades, with the gradual increase of bridge span, the stiffness of bridge becomes smaller and smaller, and the problem of wind-induced vibration becomes more and more prominent. Wind resistant design has become an indispensable link in bridge design. The buffeting response calculation of bridges has matured after years of development. However, the measured wind speed data in recent years show that the fluctuating wind speed has a strong non-stationary characteristic under the complex terrain wind environment in mountainous area, and can not be regarded as a stationary random process to calculate the wind-induced vibration response. The traditional steady buffeting response analysis can not satisfy the bridge response analysis in this kind of wind environment. In this paper, the non-stationary buffeting responses of suspension bridges under complex wind conditions are studied. The wind is regarded as a non-stationary stochastic process, and the influence of non-stationary wind velocity on the buffeting response of displacement is analyzed. This study is of great significance to bridge design and safety assessment under complex wind environment in mountainous area. In this paper, the harmonic synthesis method is used to synthesize multi-point stationary pulsating wind speed in three-dimensional space. Based on the theory of evolution spectrum, the stationary pulsating wind speed is modulated into non-stationary wind speed by the modulation function, and the wind speed time history is subjected to load treatment. The ANSYS finite element model is established, and the non-stationary buffeting response analysis program is compiled based on APDL language. The buffeting response of the whole bridge is analyzed in time domain by using the non-stationary wind load results to load the main beam, suspension cable, bridge tower and pier. Finally, the non-stationary buffeting response parameters are analyzed, and the effects of wind attack angle, aerodynamic admittance and self-excitation force on the non-stationary buffeting response are studied. The results show that the turbulence intensity of non-stationary wind speed is significantly different from that of stationary wind speed after the modulation function selected in this paper. The non-stationary buffeting response of the deck is much larger than that of the tower, and the maximum appears near the midspan of the transverse bridge. The wind attack angle has a great influence on the vertical buffeting response of the main beam, but has little effect on the transverse bridge direction and the turning angle, but has little effect on the bridge tower. The effect of aerodynamic admittance on bridge buffeting response is significant: considering aerodynamic admittance, buffeting response is obviously reduced, which indicates that the design method of not considering aerodynamic admittance in practical engineering is relatively safe; The aerodynamic self-excitation force has the divergence effect, the bridge buffeting response increases obviously after considering the aerodynamic self-excited force, especially for the vertical response of the main beam, and even plays a leading role. The vertical non-stationary buffeting response of the main beam considering self-excited force is far larger than that of the non-self-excited force. In practical engineering, the method of increasing the stiffness of the main span can be adopted to avoid the coupling vibration effect between wind and structure.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:U448.25;U441.3
【相似文献】
相关期刊论文 前10条
1 李明水,贺德馨,王卫华;大跨度桥梁抖振响应的频域分析[J];空气动力学学报;2000年01期
2 李明水,王卫华,陈忻;大跨度桥梁抖振响应研究[J];流体力学实验与测量;2000年01期
3 丁泉顺,陈艾荣,项海帆;大跨度桥梁结构耦合抖振响应频域分析[J];土木工程学报;2003年04期
4 李立,郑忠双,廖锦翔,李亮;基于时频混合格式的桥梁抖振响应计算方法[J];中国公路学报;2005年03期
5 王浩;李爱群;谢以顺;;台风“麦莎”作用下润扬悬索桥抖振响应实测研究[J];空气动力学学报;2008年03期
6 陈小锋;徐瑞;;大跨度桥梁抖振响应平稳性和各态历经性检验[J];中外公路;2010年03期
7 周玉芬;赵林;葛耀君;;紊流积分尺度对桥梁抖振响应作用效应分析[J];振动与冲击;2010年08期
8 李曙光;;钢桁架梁悬索桥抖振响应影响因素分析[J];城市道桥与防洪;2012年08期
9 刘春华,项海帆,顾明;大跨度桥梁抖振响应的空间非线性时程分析法[J];同济大学学报(自然科学版);1996年04期
10 韩大建,谭学民,颜全胜,苏成;香港汀九大桥抖振响应时程分析[J];华南理工大学学报(自然科学版);1999年11期
相关会议论文 前9条
1 王浩;李爱群;焦常科;李杏平;谢静;;强(台)风作用下大跨度悬索桥抖振响应的现场实测研究[A];第十四届全国结构风工程学术会议论文集(中册)[C];2009年
2 李明水;;大跨度桥梁的抖振响应[A];全国桥梁结构学术大会论文集(下册)[C];1992年
3 张方银;潘家英;;宁波大桥施工阶段抖振响应计算[A];中国土木工程学会1998年全国市政工程学术交流会论文集[C];1998年
4 赵林;葛耀君;李鹏飞;;考虑多分量导纳函数的抖振响应敏感性[A];第十三届全国结构风工程学术会议论文集(中册)[C];2007年
5 李斌;吴谦;杨飞;杨智春;;垂尾抖振响应工程计算方法研究[A];第十一届全国空气弹性学术交流会会议论文集[C];2009年
6 朱乐东;曹映泓;丁泉顺;徐建英;;斜风作用下斜拉桥裸塔抖振响应试验研究[A];第十一届全国结构风工程学术会议论文集[C];2004年
7 周玉芬;赵林;葛耀君;;紊流积分尺度实用识别算法及其结构风振响应效应[A];第十四届全国结构风工程学术会议论文集(下册)[C];2009年
8 龙晓鸿;李黎;胡亮;;四渡河悬索桥抖振响应时域分析[A];第18届全国结构工程学术会议论文集第Ⅲ册[C];2009年
9 罗雄;奚绍中;;大跨度桥梁桥址处随机风场的模拟[A];第八届全国结构工程学术会议论文集(第Ⅲ卷)[C];1999年
相关博士学位论文 前8条
1 刘明;沿海地区风场特性实测分析与大跨度桥梁抖振响应研究[D];西南交通大学;2013年
2 唐春平;西部山区风特性参数及大跨度钢桁拱桥抖振响应研究[D];重庆大学;2014年
3 陶奇;大跨斜拉桥施工状态抖振响应现场实测研究与分析[D];西南交通大学;2010年
4 胡晓伦;大跨度斜拉桥颤抖振响应及静风稳定性分析[D];同济大学;2006年
5 Ayad Thabit Saeed(阿亚德);厦漳跨海大桥的颤振和抖振响应实验研究[D];重庆大学;2011年
6 骆宁安;大跨度开口主梁斜拉桥的动力模型及风振分析[D];华南理工大学;2004年
7 许志豪;紊流风对大跨度分体双箱梁桥梁的作用[D];同济大学;2006年
8 陈晓冬;大跨桥梁侧风行车安全分析[D];同济大学;2007年
相关硕士学位论文 前10条
1 吴楚鹏;台风和内陆风作用下大跨度桥梁抖振响应对比研究[D];西南交通大学;2015年
2 邹孔庆;非平稳风场作用下大跨度桥梁抖振响应时域分析[D];合肥工业大学;2015年
3 谢炼;基于SHM的大跨度斜拉桥风场特性及风效应研究[D];东南大学;2015年
4 贾楠;苏通大桥风致风险分析[D];东南大学;2015年
5 赫鑫;大跨斜拉桥风荷载模拟及施工阶段抖振响应分析[D];西安建筑科技大学;2016年
6 王剑;台风登陆过程中的风场特征分析[D];重庆交通大学;2016年
7 何锦章;忠建河大桥(钢桁梁斜拉桥)施工期风致抖振响应控制措施研究[D];广西大学;2017年
8 陈艳伟;大跨悬索桥非平稳抖振位移响应时域分析[D];哈尔滨工业大学;2014年
9 胡钢;脉动风特性对大跨度桥梁结构抖振响应影响的研究[D];哈尔滨工业大学;2011年
10 于永帅;钢桁架悬索桥抖振响应及其影响参数分析[D];湖南大学;2011年
本文编号:2410966
本文链接:https://www.wllwen.com/kejilunwen/jiaotonggongchenglunwen/2410966.html