受控摇摆桥墩抗震性能及建模方法研究
[Abstract]:Bridge structure is an extremely important engineering system in a national traffic infrastructure system. When earthquakes occur, it plays an irreplaceable role as an important traffic line connecting hospitals, fire fighting, transportation and so on. The earthquake damage of the bridge has serious consequences. If the bridge is closed because of earthquake damage, the ability to deal with emergencies will be greatly weakened. Even temporary closure may have great consequences. Therefore, the integrity of the bridge must be guaranteed after the earthquake, requiring that after a larger earthquake, The bridge can still be used normally, which is a problem to be solved in realizing the recoverable function after the earthquake. In this paper, the theoretical and experimental research on a new type of controlled swing pier based on performance is carried out, and some suggestions and schemes for the basic component composition, calculation model, design method and feasibility of engineering application of swing pier are put forward. Especially, the model of controlled swing pier and the structural model of computer simulation are given in detail. In the fifth chapter of this paper, the quasi-static loading of the controlled swing pier model based on SAP2000 platform is introduced, and the response of the controlled swing pier under monotonic, cyclic and seismic action is accurately predicted. The related research contents and contributions of this paper are as follows: (1) the first chapter summarizes the great influence on bridge structure caused by earthquake, and puts forward the central idea of bridge earthquake resistance in this paper. The research on the new swing pier at home and abroad and its advantages and disadvantages after the large earthquake, its superior economic efficiency, and elaborated the main research content and purpose of this paper in detail. (2) in the second chapter, the difference between the seismic design idea based on performance and the traditional design is described in detail, and the influence of the ductile coefficient on the residual deformation after the earthquake is explained according to several groups of recorded data after the earthquake. (3) in the third chapter, the basic concept, function and design composition of each part of the controlled swing pier are explained, and the development process of the controlled swing pier and the present situation of the development of the swing pier are briefly described. (4) in chapter IV, the test and test results of swing piers carried out by Taiwan Kaohsiung first University of Science and Technology [1] (2003) are analyzed. The test results of friction dampers on swing piers made by Taiwan Kaohsiung first University of Science and Technology [2] (2008) are analyzed, and the test and results of a new type of self-reset piers studied by Tsinghua University [3] (2012) are analyzed. The similarities and differences between the controlled swing pier and the traditional pier are expounded. The superior economic performance of performance-based recoverable function structure and the feasibility of practical application are explained. (5) in the fifth chapter, according to the results of this paper, the modeling method of controlled swing pier is put forward, which is modeled by SAP2000, and the cantilever frame structure is selected, and dampers are added to the structure instead of seismic energy dissipation components. The connection with bridge deck and foundation cap is represented by nonlinear spring and nonlinear inelastic spring, and the displacement component can be recovered by adding prestressed steel bar instead of controlled earthquake, and the quasi-static cyclic loading test of swing pier is carried out. The mechanical parameters of the loaded data are analyzed. (6) in the sixth chapter, the main contents of this paper are summarized, and the advantages of the controlled swing pier and the accuracy of the model are explained. the development prospect of the new seismic structure of the bridge and its recoverable function after the earthquake are prospected.
【学位授予单位】:长安大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:U443.22;U442.55
【共引文献】
相关期刊论文 前9条
1 张纪刚;禚焕雯;江志伟;;基于摇摆墙体系的新型海洋平台振动控制研究[J];土木工程学报;2012年S2期
2 蔡小宁;孟少平;孙巍巍;;自复位预制框架边节点抗震性能试验研究[J];土木工程学报;2012年12期
3 杜永峰;武大洋;;一种轻型消能摇摆架近断层地震响应减震分析[J];土木工程学报;2013年S2期
4 张纪刚;江志伟;李秋义;;刚度对海洋平台-摇摆墙体系抗震性能的影响研究[J];土木工程学报;2013年S1期
5 杜永峰;武大洋;;基于刚度需求设计的轻型消能摇摆架减震性态分析[J];土木工程学报;2014年01期
6 宋晓辉;方国强;白洁;;东明黄河公路大桥抗震设计[J];铁道建筑;2014年08期
7 赵桂峰;马玉宏;陈小飞;;村镇建筑基于性态标准的地震易损性分析[J];土木工程学报;2014年09期
8 惠迎新;王克海;李冲;范增昱;;海峡两岸公路桥梁抗震设计规范比较与研究[J];世界地震工程;2014年03期
9 刘鹏;袁明;陈克坚;曾永平;;熔断机制在摇摆桥墩连续刚构桥中的应用[J];铁道工程学报;2014年10期
相关会议论文 前1条
1 徐佳琦;吕西林;;基于能量的框架-摇摆墙结构与框架-剪力墙结构地震反应分析对比[A];城市地下空间综合开发技术交流会论文集[C];2013年
相关博士学位论文 前10条
1 江义;基于能量平衡的建筑结构非线性静力方法及分灾设计谱的研究[D];大连理工大学;2013年
2 刘迪;轻型消能摇摆结构体系抗震性能评估与动力可靠度分析[D];兰州理工大学;2013年
3 刘璐;自复位防屈曲支撑结构抗震性能及设计方法[D];哈尔滨工业大学;2013年
4 张风亮;中国古建筑木结构加固及其性能研究[D];西安建筑科技大学;2013年
5 付波;板件延性系数和面向抗震设计的钢截面分类[D];浙江大学;2014年
6 姚霄雯;基于性能的高拱坝地震易损性分析与抗震安全评估[D];浙江大学;2013年
7 王亚楠;脉冲型地震下考虑支座位移需求的减震—隔震混合控制体系抗震性能研究[D];兰州理工大学;2014年
8 陈力波;汶川地区公路桥梁地震易损性分析研究[D];西南交通大学;2012年
9 闫晓宇;多点激励下大跨度钢筋混凝土桥梁地震响应振动台阵试验研究[D];天津大学;2013年
10 刘伟;基于损伤理论的砌体结构房屋性能化抗震设计研究[D];郑州大学;2014年
相关硕士学位论文 前10条
1 禚焕雯;基于加强层粘滞阻尼系统和摇摆墙结构的海洋平台振动控制初步研究[D];青岛理工大学;2012年
2 陈军;预制混凝土框架梁柱自复位混合接头抗震性能研究[D];兰州理工大学;2013年
3 武大洋;近场地震作用下轻型自复位消能摇摆刚架减震性能分析[D];兰州理工大学;2013年
4 巨晶;顶底角钢自复位钢框架结构体系的研究[D];西安建筑科技大学;2013年
5 刘龙;非对称混凝土独塔斜拉桥地震响应分析[D];长安大学;2013年
6 于旭光;钢板深梁填充钢框架的能量分析及损伤设计[D];长安大学;2013年
7 周来彬;高墩大跨连续刚构桥动力性能研究[D];长安大学;2013年
8 樊秋;双柱式桥墩抗震分析与研究[D];长安大学;2013年
9 郭瑞;大跨度异形钢拱桥的抗震分析[D];浙江工业大学;2013年
10 杨书杨;新型空腹式刚构桥与普通刚构桥的对比分析[D];华中科技大学;2013年
本文编号:2491862
本文链接:https://www.wllwen.com/kejilunwen/jiaotonggongchenglunwen/2491862.html