当前位置:主页 > 科技论文 > 军工论文 >

压缩感知在通信抗干扰中的应用研究

发布时间:2020-09-01 13:26
   随着无线通信技术的迅猛发展,各种无线移动设备已经广泛应用于各个领域。与此同时,通信速率越来越高,传输信息量越来越大,通信设备和系统面临的干扰也日趋严重。通信现有抗干扰手段通常以较多频带资源为代价换取系统抗干扰性能,但是通信资源毕竟有限。如果能够在传输用户数据本身所需资源上容忍干扰信号的存在,以数据处理算法实现用户信号的正确传输,将可以实现容扰通信系统的高效性与高质性。本文结合压缩感知,提出信道侧OFDM压缩感知抗干扰通信传输系统,突破传统采样限制,以信号本身稀疏性实现接收端的信号恢复。文章首先简述了压缩感知和通信抗干扰技术的国内外研究现状和发展动态,然后搭建压缩感知理论框架,重点研究常用观测矩阵和常用重构算法的性能。进一步地,通过对信道编码信号稀疏性的探索,提出信道侧压缩感知抗干扰通信系统。然后对系统的四个部分:通信信号的稀疏表示、投影变换过程、有扰传输过程、信号的重构进行介绍,进而对系统可行性进行分析。同时,本文提出了等效观测矩阵的概念,将观测矩阵分为两个部分,分别应用于信道之前与信道之后。重点研究了在采用等效观测矩阵和传统单层观测矩阵时,不同数据分组长度对幅值重构误差的影响,仿真结果体现了观测矩阵分阶设计的优势。最后定义了衡量通信系统容扰性能与算法性能的评判指标。在不同的干扰类型下,通过仿真对比了信道侧OFDM压缩感知传输系统和传统只考虑信道编码的OFDM系统的误码性能。同时分析了信道侧压缩感知系统在不同干扰下的算法稳定性。
【学位单位】:电子科技大学
【学位级别】:硕士
【学位年份】:2018
【中图分类】:TN973
【部分图文】:

过程图,线性测量,过程,信号


其中,数字K 又称作稀疏度。或者当信号原本不具有稀疏性,但信x在某些基矩阵 中可以等效稀疏表达,也即x ,其中0 K,这样信号仍然是K 稀疏信号。特别地,当信号x自身元素值多为零或者非常小,则变换基就是单位阵。现考虑存在一未知实数信号Nx R,其在正交基变换矩阵N NR 中能够效表达成x ,稀疏信号 稀疏度是K ,即信号 中最多存在K 个元素值不为或者非常大。利用观测阵M NR M N ( )对信号 x 作降维采样处理,以获得在观测阵 下的观测矢量yM R,有y x(2也即y (2其中,称M N维的矩阵 A 为感知矩阵。线性测量过程如图 2-3 所示。y A

时域,信号,元素


电子科技大学硕士学位论文 中的元素值只有K 个取非零值(或者元素值相比其它元素值下,若信号 中的非零元数目K 远不及原矢量 x 维度N ,我们正交基 下是K -稀疏的。但这种定义并没有指明“远远小于范围。文献[22]从数学角度对稀疏性做出了另一种谨严的解释在正交变换域N NR 下等价表示为T x,对任意 0 p 成立:1/0( )Nppipi R 为信号 在p-范数下是稀疏的。倘若满足系数 ,i i x 的势不大于K[23],就称信号x在 域下是K -稀疏的。-5 所示,是一个维度为 1024 的时域稀疏信号,该信号稀疏度

时域波形,频域,脉冲信号,声音信号


图 2-6 脉冲信号及其在频并非所有非稀疏的时域信号在频域都可以段声音信号,该声音信号的时域波形如图 2-7(离散余弦变换(DiscreteCosineTransform,DCT信号能量都聚积在低频段,呈现出稀疏性,如0 50 100 150 200 250 300 350 400 450 500N-0.1-0.0500.050.10 -0.3-0.2-0.100.10.2值幅

【相似文献】

相关期刊论文 前10条

1 李周;崔琛;;压缩感知中观测矩阵的优化算法[J];信号处理;2018年02期

2 鄢鹏程;;一种基于阈值迭代和自适应观测矩阵的压缩感知图像处理[J];信息与电脑(理论版);2013年03期

3 赵玉娟;郑宝玉;陈守宁;;压缩感知自适应观测矩阵设计[J];信号处理;2012年12期

4 李周;崔琛;;基于奇异值分解的压缩感知观测矩阵优化算法[J];计算机应用;2018年02期

5 崔志华;张春妹;时振涛;牛云;;基于蝙蝠算法的观测矩阵优化算法[J];控制与决策;2018年07期

6 杨春玲;李林荪;;基于像素相关的图像/视频压缩感知观测矩阵[J];华南理工大学学报(自然科学版);2017年12期

7 刘学文;肖嵩;薛晓;;经验模态分解构造观测矩阵的方法[J];西安电子科技大学学报;2018年01期

8 王军华;黄知涛;周一宇;王丰华;;压缩感知理论中的广义不相关性准则[J];信号处理;2012年05期

9 练秋生;王小娜;石保顺;陈书贞;;基于多重解析字典学习和观测矩阵优化的压缩感知[J];计算机学报;2015年06期

10 王金铭;叶时平;徐振宇;蒋燕君;;低存储化压缩感知[J];中国图象图形学报;2016年07期

相关会议论文 前1条

1 吴尧;张广智;卢溜;;利用偏最小二乘回归方法进行储层厚度预测[A];2017中国地球科学联合学术年会论文集(三十二)——专题61:工程地球物理技术进展与应用、专题62:油藏地球物理[C];2017年

相关博士学位论文 前10条

1 孙晶明;压缩感知中观测矩阵的研究[D];华中科技大学;2013年

2 黄天耀;基于稀疏反演的相参捷变频雷达信号处理[D];清华大学;2014年

3 徐永刚;矿山数据压缩采集与重建方法研究[D];中国矿业大学;2013年

4 姚世红;压缩感知若干关键问题研究[D];武汉大学;2015年

5 张京超;稀疏多频带信号压缩采样方法研究[D];哈尔滨工业大学;2014年

6 丁丽;MIMO雷达稀疏成像的失配问题研究[D];中国科学技术大学;2014年

7 叶蕾;语音信号压缩感知关键技术研究[D];南京邮电大学;2014年

8 季云云;压缩感知观测矩阵与脉冲噪声环境下重构算法研究[D];南京邮电大学;2014年

9 蔡卓燃;基于机器学习与压缩感知的认知无线电频谱感知方法研究[D];哈尔滨工业大学;2013年

10 马彦鹏;基于压缩感知的计算成像技术研究[D];中国科学院研究生院(上海技术物理研究所);2016年

相关硕士学位论文 前10条

1 陈翠;压缩感知在通信抗干扰中的应用研究[D];电子科技大学;2018年

2 杨保杰;基于DAE的脑网络状态观测矩阵降维方法研究[D];昆明理工大学;2017年

3 董迎朝;基于t-SNE算法的脑网络状态观测矩阵降维及可视化平台研究[D];昆明理工大学;2017年

4 方杰;压缩感知观测矩阵和重构算法的研究[D];华南理工大学;2015年

5 刘莎;压缩感知中观测矩阵的构造及优化方法研究[D];东北大学;2013年

6 兰明然;基于压缩感知中观测矩阵优化和重构算法研究[D];南京邮电大学;2017年

7 彭亚;观测矩阵自适应及其在宽带频谱感知中的应用研究[D];南京航空航天大学;2016年

8 贺玉高;基于压缩感知理论的特征导向观测方法研究[D];西安电子科技大学;2017年

9 金莉;基于隐空间稀疏的非线性压缩感知理论研究[D];西安电子科技大学;2015年

10 肖小潮;基于压缩感知的多径信道估计及其研究[D];南京邮电大学;2012年



本文编号:2809791

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jingguansheji/2809791.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户c8f14***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com